651 research outputs found

    On Parallelizing Matrix Multiplication by the Column-Row Method

    Full text link
    We consider the problem of sparse matrix multiplication by the column row method in a distributed setting where the matrix product is not necessarily sparse. We present a surprisingly simple method for ā€œconsistent ā€ parallel processing of sparse outer products (column-row vector products) over several processors, in a communication-avoiding setting where each processor has a copy of the input. The method is consistent in the sense that a given output entry is always assigned to the same processor independently of the specific structure of the outer product. We show guarantees on the work done by each processor, and achieve linear speedup down to the point where the cost is dominated by reading the input. Our method gives a way of distributing (or parallelizing) matrix product computations in settings where the main bottlenecks are storing the result matrix, and inter-processor communication. Motivated by observations on real data that often the absolute values of the entries in the product adhere to a power law, we combine our approach with frequent items mining algorithms and show how to obtain a tight approximation of the weight of the heaviest entries in the product matrix. As a case study we present the application of our approach to frequent pair mining in transactional data streams, a problem that can be phrased in terms of sparse {0, 1}integer matrix multiplication by the column-row method. Experimental evaluation of the proposed method on real-life data supports the theoretical findings.

    Efficient Algorithms to Compute Hierarchical Summaries from Big Data Streams

    Full text link
    Many data stream applications have hierarchical data; containing time, geographic locations, product information, clickstreams, server logs, IP addresses. A hierarchical summary of such volumous data offers multiple advantages including compactness, quick understanding, and abstraction. The goal of this thesis is to design algorithmic approaches for summarizing hierarchical data streams. First, this thesis provides a theoretical analysis of the benchmark hierarchical heavy hitters' algorithms and uncovers their shortcomings such as requiring high theoretical memory, updates and coverage problem. To address these shortcomings, this thesis proposes efficient algorithms which offer deterministic estimation accuracy using O(Ī·/Īµ) worst-case memory and O(Ī·) worst-case time complexity per item, where Īµ āˆˆ [0,1] is a user defined parameter and Ī· is a small constant derived from the data. The proposed hierarchical heavy hitters' algorithms are shown to have improved significantly over existing algorithms both theoretically as well as empirically. Next, this thesis introduces a new concept called hierarchically correlated heavy hitters, which is different from existing hierarchical summarization techniques. The thesis provides a formal definition of the proposed concept and compares it with existing hierarchical summarization approaches both at definition level and empirically. It also proposes an efficient hierarchy-aware algorithm for computing hierarchically correlated heavy hitters. The proposed algorithm offers deterministic estimation accuracy using O(Ī· / (Īµ_p * Īµ_s )) worst-case memory and O(Ī·) worst-case time complexity per item, where Ī· is as defined previously, and Īµ_p āˆˆ [0,1], Īµ_s āˆˆ [0,1] are other user defined parameters. Finally, the thesis proposes a special hierarchical data structure and algorithm to summarize spatiotemporal data. It can be used to extract interesting and useful patterns from high-speed spatiotemporal data streams at multiple spatial and temporal granularities. Theoretical and empirical analysis are provided, which show that the proposed data structure is very efficient concerning data storage and response to queries. It updates a single item in O(1) time and responds to a point query in O(1) time. Importantly, the memory requirement of the proposed data structure is independent of the size of the data and only depends on user-supplied parameters Ļˆ āƒ— and Ļ† āƒ—. In summary, this thesis provides a general framework consisting of a set of algorithms and data structures to compute hierarchical summaries of the big data streams. All of the proposed algorithms exploit a lattice structure built from the hierarchical attributes of the data to compute different hierarchical summaries, which can be used to address various data analytic issues in many emerging applications

    Methods to Improve Applicability and Efficiency of Distributed Data-Centric Compute Frameworks

    Get PDF
    The success of modern applications depends on the insights they collect from their data repositories. Data repositories for such applications currently exceed exabytes and are rapidly increasing in size, as they collect data from varied sources - web applications, mobile phones, sensors and other connected devices. Distributed storage and data-centric compute frameworks have been invented to store and analyze these large datasets. This dissertation focuses on extending the applicability and improving the efficiency of distributed data-centric compute frameworks

    Database Streaming Compression on Memory-Limited Machines

    Get PDF
    Dynamic Huffman compression algorithms operate on data-streams with a bounded symbol list. With these algorithms, the complete list of symbols must be contained in main memory or secondary storage. A horizontal format transaction database that is streaming can have a very large item list. Many nodes tax both the processing hardware primary memory size, and the processing time to dynamically maintain the tree. This research investigated Huffman compression of a transaction-streaming database with a very large symbol list, where each item in the transaction database schemaā€™s item list is a symbol to compress. The constraint of a large symbol list is, in this research, equivalent to the constraint of a memory-limited machine. A large symbol set will result if each item in a large database item list is a symbol to compress in a database stream. In addition, database streams may have some temporal component spanning months or years. Finally, the horizontal format is the format most suited to a streaming transaction database because the transaction IDs are not known beforehand This research prototypes an algorithm that will compresses a transaction database stream. There are several advantages to the memory limited dynamic Huffman algorithm. Dynamic Huffman algorithms are single pass algorithms. In many instances a second pass over the data is not possible, such as with streaming databases. Previous dynamic Huffman algorithms are not memory limited, they are asymptotic to O(n), where n is the number of distinct item IDs. Memory is required to grow to fit the n items. The improvement of the new memory limited Dynamic Huffman algorithm is that it would have an O(k) asymptotic memory requirement; where k is the maximum number of nodes in the Huffman tree, k \u3c n, and k is a user chosen constant. The new memory limited Dynamic Huffman algorithm compresses horizontally encoded transaction databases that do not contain long runs of 0ā€™s or 1ā€™s

    Adaptive algorithms for real-world transactional data mining.

    Get PDF
    The accurate identiļ¬cation of the right customer to target with the right product at the right time, through the right channel, to satisfy the customerā€™s evolving needs, is a key performance driver and enhancer for businesses. Data mining is an analytic process designed to explore usually large amounts of data (typically business or market related) in search of consistent patterns and/or systematic relationships between variables for the purpose of generating explanatory/predictive data models from the detected patterns. It provides an effective and established mechanism for accurate identiļ¬cation and classiļ¬cation of customers. Data models derived from the data mining process can aid in effectively recognizing the status and preference of customers - individually and as a group. Such data models can be incorporated into the business market segmentation, customer targeting and channelling decisions with the goal of maximizing the total customer lifetime proļ¬t. However, due to costs, privacy and/or data protection reasons, the customer data available for data mining is often restricted to veriļ¬ed and validated data,(in most cases,only the business owned transactional data is available). Transactional data is a valuable resource for generating such data models. Transactional data can be electronically collected and readily made available for data mining in large quantity at minimum extra cost. Transactional data is however, inherently sparse and skewed. These inherent characteristics of transactional data give rise to the poor performance of data models built using customer data based on transactional data. Data models for identifying, describing, and classifying customers, constructed using evolving transactional data thus need to effectively handle the inherent sparseness and skewness of evolving transactional data in order to be efficient and accurate. Using real-world transactional data, this thesis presents the ļ¬ndings and results from the investigation of data mining algorithms for analysing, describing, identifying and classifying customers with evolving needs. In particular, methods for handling the issues of scalability, uncertainty and adaptation whilst mining evolving transactional data are analysed and presented. A novel application of a new framework for integrating transactional data binning and classiļ¬cation techniques is presented alongside an effective prototype selection algorithm for efficient transactional data model building. A new change mining architecture for monitoring, detecting and visualizing the change in customer behaviour using transactional data is proposed and discussed as an effective means for analysing and understanding the change in customer buying behaviour over time. Finally, the challenging problem of discerning between the change in the customer proļ¬le (which may necessitate the effective change of the customerā€™s label) and the change in performance of the model(s) (which may necessitate changing or adapting the model(s)) is introduced and discussed by way of a novel ļ¬‚exible and efficient architecture for classiļ¬er model adaptation and customer proļ¬les class relabeling

    A data mining approach to ontology learning for automatic content-related question-answering in MOOCs.

    Get PDF
    The advent of Massive Open Online Courses (MOOCs) allows massive volume of registrants to enrol in these MOOCs. This research aims to offer MOOCs registrants with automatic content related feedback to fulfil their cognitive needs. A framework is proposed which consists of three modules which are the subject ontology learning module, the short text classification module, and the question answering module. Unlike previous research, to identify relevant concepts for ontology learning a regular expression parser approach is used. Also, the relevant concepts are extracted from unstructured documents. To build the concept hierarchy, a frequent pattern mining approach is used which is guided by a heuristic function to ensure that sibling concepts are at the same level in the hierarchy. As this process does not require specific lexical or syntactic information, it can be applied to any subject. To validate the approach, the resulting ontology is used in a question-answering system which analyses students' content-related questions and generates answers for them. Textbook end of chapter questions/answers are used to validate the question-answering system. The resulting ontology is compared vs. the use of Text2Onto for the question-answering system, and it achieved favourable results. Finally, different indexing approaches based on a subject's ontology are investigated when classifying short text in MOOCs forum discussion data; the investigated indexing approaches are: unigram-based, concept-based and hierarchical concept indexing. The experimental results show that the ontology-based feature indexing approaches outperform the unigram-based indexing approach. Experiments are done in binary classification and multiple labels classification settings . The results are consistent and show that hierarchical concept indexing outperforms both concept-based and unigram-based indexing. The BAGGING and random forests classifiers achieved the best result among the tested classifiers
    • ā€¦
    corecore