1,324 research outputs found

    Improved Correction of Atmospheric Pressure Data Obtained by Smartphones through Machine Learning

    Get PDF
    A correction method using machine learning aims to improve the conventional linear regression (LR) based method for correction of atmospheric pressure data obtained by smartphones. The method proposed in this study conducts clustering and regression analysis with time domain classification. Data obtained in Gyeonggi-do, one of the most populous provinces in South Korea surrounding Seoul with the size of 10,000 km2, from July 2014 through December 2014, using smartphones were classified with respect to time of day (daytime or nighttime) as well as day of the week (weekday or weekend) and the user’s mobility, prior to the expectation-maximization (EM) clustering. Subsequently, the results were analyzed for comparison by applying machine learning methods such as multilayer perceptron (MLP) and support vector regression (SVR). The results showed a mean absolute error (MAE) 26% lower on average when regression analysis was performed through EM clustering compared to that obtained without EM clustering. For machine learning methods, the MAE for SVR was around 31% lower for LR and about 19% lower for MLP. It is concluded that pressure data from smartphones are as good as the ones from national automatic weather station (AWS) network

    Collecting and utilising crowdsourced data for numerical weather prediction: propositions from the meeting held in Copenhagen, 4–December 5, 2018

    Get PDF
    In December 2018, the Danish Meteorological Institute organised an international meeting on the subject of crowdsourced data in numerical weather prediction (NWP) and weather forecasting. The meeting, spanning 2 days, gathered experts on crowdsourced data from both meteorological institutes and universities from Europe and the United States. Scientific presentations highlighted a vast array of possibilities and progress being made globally. Subjects include data from vehicles, smartphones, and private weather stations. Two groups were created to discuss open questions regarding the collection and use of crowdsourced data from different observing platforms. Common challenges were identified and potential solutions were discussed. While most of the work presented was preliminary, the results shared suggested that crowdsourced observations have the potential to enhance NWP. A common platform for sharing expertise, data, and results would help crowdsourced data realise this potential

    Real-Time Urban Weather Observations for Urban Air Mobility

    Get PDF
    Cities of the future will have to overcome congestion, air pollution and increasing infrastructure cost while moving more people and goods smoothly, efficiently and in an eco-friendly manner. Urban air mobility (UAM) is expected to be an integral component of achieving this new type of city. This is a new environment for sustained aviation operations. The heterogeneity of the urban fabric and the roughness elements within it create a unique environment where flight conditions can change frequently across very short distances. UAM vehicles with their lower mass, more limited thrust and slower speeds are especially sensitive to these conditions. Since traditional aviation weather products for observations and forecasts at an airport on the outskirts of a metropolitan area do not translate well to the urban environment, weather data for low-altitude urban airspace is needed and will be particularly critical for unlocking the full potential of UAM. To help address this need, crowdsourced weather data from sources prevalent in urban areas offer the opportunity to create dense meteorological observation networks in support of UAM. This paper considers a variety of potential observational sources and proposes a cyber-physical system architecture, including an incentive-based crowdsensing application, which empowers UAM weather forecasting and operations

    Explotación de nuevas oportunidades científicas de los sistemas de posicionamiento global por satélite (GNSS) desde una perspectiva intensiva en datos

    Full text link
    [EN] With the current GNSS infrastructure development plans, over 120 GNSS satellites (including European Galileo satellites)will provide, already this decade, continuous data, in several frequencies, without interruption and on a permanent basis.This global and permanent GNSS infrastructure constitutes a major opportunity for GNSS science applications. In themeantime, recent advances in technology have contributed "de-facto" to the deployment of a large GNSS receiver arraybased on Internet of Things (IoT), affordable smart devices easy to find in everybody’s pockets. These devices – evolvingfast at each new generation – feature an increasing number of capabilities and sensors able to collect a variety ofmeasurements, improving GNSS performance. Among these capabilities, Galileo dual band smartphones receivers andAndroid’s support for raw GNSS data recording represent major steps forward for Positioning, Navigation and Timing (PNT)data processing improvements. Information gathering from these devices, commonly referred as crowdsourcing, opensthe door to new data-intensive analysis techniques in many science domains. At this point, collaboration between variousresearch groups is essential to harness the potential hidden behind the large volumes of data generated by thiscyberinfrastructure. Cloud Computing technologies extend traditional computational boundaries, enabling execution ofprocessing components close to the data. This paradigm shift offers seamless execution of interactive algorithms andanalytics, skipping lengthy downloads and setups. The resulting scenario, defined by a GNSS Big Data repository with colocatedprocessing capabilities, sets an excellent basis for the application of Artificial Intelligence / Machine Learning (ML)technologies in the context of GNSS. This unique opportunity for science has been recognized by the European SpaceAgency (ESA) with the creation of the Navigation Scientific Office, which leverages on GNSS infrastructure to deliverinnovative solutions across multiple scientific domains.[ES] Con los planes actuales de desarrollo de la infraestructura GNSS, más de 120 satélites GNSS (incluidos los satélites europeos Galileo) proporcionarán, ya en esta década, datos continuos, en varias frecuencias, sin interrupciones y de forma permanente. Esta infraestructura GNSS global y permanente constituye una gran oportunidad para las aplicaciones científicas de GNSS. Mientras tanto, avances recientes han contribuido al despliegue de una red GNSS paralela basada en la Internet de las Cosas (IoT), asequibles dispositivos inteligentes fáciles de encontrar en todos los bolsillos. Estos dispositivos, que evolucionan rápidamente con cada nueva generación, acumulan un número creciente de funcionalidades y sensores capaces de recopilar una gran variedad de mediciones. Entre estas funcionalidades, los receptores de teléfonos inteligentes de banda dual Galileo y el soporte Android para la grabación de datos GNSS sin procesar representan pasos especialmente relevantes. La recopilación de información mediante estos dispositivos, comúnmente conocida como crowdsourcing, abre la puerta a nuevas técnicas de análisis de datos en múltiples dominios científicos. Llegados a este punto, la colaboración entre diversos grupos de investigación resulta esencial para aprovechar el potencial que se esconde en los grandes volúmenes de datos generados por esta ciberinfraestructura. Las tecnologías de Cloud Computing extienden los límites computacionales tradicionales permitiendo la ejecución de componentes de procesamiento cerca de los datos. Este cambio de paradigma ofrece una rápida ejecución de algoritmos y análisis interactivos, omitiendo largas descargas y configuraciones. El escenario resultante, definido por un repositorio GNSS Big Data con capacidades de procesamiento acopladas, establece una base excelente para la aplicación de tecnologías de Inteligencia Artificial / Aprendizaje Automático (ML). Esta oportunidad única para la ciencia ha sido reconocida por la Agencia Espacial Europea (ESA) con la creación de la Oficina Científica de Navegación, que aprovecha la infraestructura GNSS para ofrecer soluciones innovadoras en múltiples dominios científicos.This work was supported by the European Space Agency as part of Research and Development Programmes under Science and Navigation Directorates. The authors would like to thank the GNSS Science Advisory Committee and ESA Navigation Support Office for their support and suggestions. We also thank our Industrial partners, involved in science use cases assessment and implementation. Thanks also to the Science and Operations technical IT Unit at ESAC supporting the deployment of the GSSC Thematic Exploitation Platform. We would like to thank all data collection providers, with special thanks to IGS, ILRS, CDDIS, BKG and IGN for their sustained and remarkable support making possible the creation of the GSSC Repository at the core of this work.Navarro, V.; Ventura-Traveset, J. (2021). A data-intensive approach to exploit new GNSS science opportunities. En Proceedings 3rd Congress in Geomatics Engineering. Editorial Universitat Politècnica de València. 43-53. https://doi.org/10.4995/CiGeo2021.2021.12740OCS435

    Algorithms leveraging smartphone sensing for analyzing explosion events

    Get PDF
    The increasing frequency of explosive disasters throughout the world in recent years have created a clear need for the systems to monitor for them continuously to improve the post-disaster emergency events such as rescue and recovery operations. Disasters both man-made and natural are unfortunate and not preferred, however monitoring them may be a lifesaving phenomenon in emergency scenarios. Dedicated sensors deployed in the public places and their associated networks to monitor such events may be inadequate and must be complemented for making the monitoring more pervasive and effective. In the recent past, modern smartphones with significant processing, networking and storage capabilities have become a rich source of mobile infrastructure empowering participatory sensing to address many problems in the area of pervasive computing. In the work presented in this dissertation, smartphone sensed data during disastrous scenarios is extensively studied, analyzed and algorithms were built for participatory sensing to address the problems, specifically in the context of Explosion -- Events which are of interest to the current study. This work presents description of the systems for assisting people by detecting, ranging and estimating intensity of the explosion events leveraging multi-modal smartphone sensors. This work also presents various challenges and opportunities in utilizing the capabilities of the sensors in smartphone for building such systems along with practical applications, limitations and future directions --Abstract, page iii

    Development and Application of a Statistically-Based Quality Control for Crowdsourced Air Temperature Data

    Get PDF
    In urban areas, dense atmospheric observational networks with high-quality data are still a challenge due to high costs for installation and maintenance over time. Citizen weather stations (CWS) could be one answer to that issue. Since more and more owners of CWS share their measurement data publicly, crowdsourcing, i.e., the automated collection of large amounts of data from an undefined crowd of citizens, opens new pathways for atmospheric research. However, the most critical issue is found to be the quality of data from such networks. In this study, a statistically-based quality control (QC) is developed to identify suspicious air temperature (T) measurements from crowdsourced data sets. The newly developed QC exploits the combined knowledge of the dense network of CWS to statistically identify implausible measurements, independent of external reference data. The evaluation of the QC is performed using data from Netatmo CWS in Toulouse, France, and Berlin, Germany, over a 1-year period (July 2016 to June 2017), comparing the quality-controlled data with data from two networks of reference stations. The new QC efficiently identifies erroneous data due to solar exposition and siting issues, which are common error sources of CWS. Estimation of T is improved when averaging data from a group of stations within a restricted area rather than relying on data of individual CWS. However, a positive deviation in CWS data compared to reference data is identified, particularly for daily minimum T. To illustrate the transferability of the newly developed QC and the applicability of CWS data, a mapping of T is performed over the city of Paris, France, where spatial density of CWS is especially high.DFG, 322579844, Hitzewellen in Berlin, Deutschland - StadtklimamodifkationenBMBF, 01LP1602A, Verbundprojekt Stadtklima: Evaluierung von Stadtklimamodellen (Modul B), 3DO Teilprojekt 1: Dreidimensionales Monitoring atmosphärischer Prozesse in Berli

    On the use of smartphones as novel photogrammetric water gauging instruments: Developing tools for crowdsourcing water levels

    Get PDF
    The term global climate change is omnipresent since the beginning of the last decade. Changes in the global climate are associated with an increase in heavy rainfalls that can cause nearly unpredictable flash floods. Consequently, spatio-temporally high-resolution monitoring of rivers becomes increasingly important. Water gauging stations continuously and precisely measure water levels. However, they are rather expensive in purchase and maintenance and are preferably installed at water bodies relevant for water management. Small-scale catchments remain often ungauged. In order to increase the data density of hydrometric monitoring networks and thus to improve the prediction quality of flood events, new, flexible and cost-effective water level measurement technologies are required. They should be oriented towards the accuracy requirements of conventional measurement systems and facilitate the observation of water levels at virtually any time, even at the smallest rivers. A possible solution is the development of a photogrammetric smartphone application (app) for crowdsourcing water levels, which merely requires voluntary users to take pictures of a river section to determine the water level. Today’s smartphones integrate high-resolution cameras, a variety of sensors, powerful processors, and mass storage. However, they are designed for the mass market and use low-cost hardware that cannot comply with the quality of geodetic measurement technology. In order to investigate the potential for mobile measurement applications, research was conducted on the smartphone as a photogrammetric measurement instrument as part of the doctoral project. The studies deal with the geometric stability of smartphone cameras regarding device-internal temperature changes and with the accuracy potential of rotation parameters measured with smartphone sensors. The results show a high, temperature-related variability of the interior orientation parameters, which is why the calibration of the camera should be carried out during the immediate measurement. The results of the sensor investigations show considerable inaccuracies when measuring rotation parameters, especially the compass angle (errors up to 90° were observed). The same applies to position parameters measured by global navigation satellite system (GNSS) receivers built into smartphones. According to the literature, positional accuracies of about 5 m are possible in best conditions. Otherwise, errors of several 10 m are to be expected. As a result, direct georeferencing of image measurements using current smartphone technology should be discouraged. In consideration of the results, the water gauging app Open Water Levels (OWL) was developed, whose methodological development and implementation constituted the core of the thesis project. OWL enables the flexible measurement of water levels via crowdsourcing without requiring additional equipment or being limited to specific river sections. Data acquisition and processing take place directly in the field, so that the water level information is immediately available. In practice, the user captures a short time-lapse sequence of a river bank with OWL, which is used to calculate a spatio-temporal texture that enables the detection of the water line. In order to translate the image measurement into 3D object space, a synthetic, photo-realistic image of the situation is created from existing 3D data of the river section to be investigated. Necessary approximations of the image orientation parameters are measured by smartphone sensors and GNSS. The assignment of camera image and synthetic image allows for the determination of the interior and exterior orientation parameters by means of space resection and finally the transfer of the image-measured 2D water line into the 3D object space to derive the prevalent water level in the reference system of the 3D data. In comparison with conventionally measured water levels, OWL reveals an accuracy potential of 2 cm on average, provided that synthetic image and camera image exhibit consistent image contents and that the water line can be reliably detected. In the present dissertation, related geometric and radiometric problems are comprehensively discussed. Furthermore, possible solutions, based on advancing developments in smartphone technology and image processing as well as the increasing availability of 3D reference data, are presented in the synthesis of the work. The app Open Water Levels, which is currently available as a beta version and has been tested on selected devices, provides a basis, which, with continuous further development, aims to achieve a final release for crowdsourcing water levels towards the establishment of new and the expansion of existing monitoring networks.Der Begriff des globalen Klimawandels ist seit Beginn des letzten Jahrzehnts allgegenwärtig. Die Veränderung des Weltklimas ist mit einer Zunahme von Starkregenereignissen verbunden, die nahezu unvorhersehbare Sturzfluten verursachen können. Folglich gewinnt die raumzeitlich hochaufgelöste Überwachung von Fließgewässern zunehmend an Bedeutung. Pegelmessstationen erfassen kontinuierlich und präzise Wasserstände, sind jedoch in Anschaffung und Wartung sehr teuer und werden vorzugsweise an wasserwirtschaftlich-relevanten Gewässern installiert. Kleinere Gewässer bleiben häufig unbeobachtet. Um die Datendichte hydrometrischer Messnetze zu erhöhen und somit die Vorhersagequalität von Hochwasserereignissen zu verbessern, sind neue, kostengünstige und flexibel einsetzbare Wasserstandsmesstechnologien erforderlich. Diese sollten sich an den Genauigkeitsanforderungen konventioneller Messsysteme orientieren und die Beobachtung von Wasserständen zu praktisch jedem Zeitpunkt, selbst an den kleinsten Flüssen, ermöglichen. Ein Lösungsvorschlag ist die Entwicklung einer photogrammetrischen Smartphone-Anwendung (App) zum Crowdsourcing von Wasserständen mit welcher freiwillige Nutzer lediglich Bilder eines Flussabschnitts aufnehmen müssen, um daraus den Wasserstand zu bestimmen. Heutige Smartphones integrieren hochauflösende Kameras, eine Vielzahl von Sensoren, leistungsfähige Prozessoren und Massenspeicher. Sie sind jedoch für den Massenmarkt konzipiert und verwenden kostengünstige Hardware, die nicht der Qualität geodätischer Messtechnik entsprechen kann. Um das Einsatzpotential in mobilen Messanwendungen zu eruieren, sind Untersuchungen zum Smartphone als photogrammetrisches Messinstrument im Rahmen des Promotionsprojekts durchgeführt worden. Die Studien befassen sich mit der geometrischen Stabilität von Smartphone-Kameras bezüglich geräteinterner Temperaturänderungen und mit dem Genauigkeitspotential von mit Smartphone-Sensoren gemessenen Rotationsparametern. Die Ergebnisse zeigen eine starke, temperaturbedingte Variabilität der inneren Orientierungsparameter, weshalb die Kalibrierung der Kamera zum unmittelbaren Messzeitpunkt erfolgen sollte. Die Ergebnisse der Sensoruntersuchungen zeigen große Ungenauigkeiten bei der Messung der Rotationsparameter, insbesondere des Kompasswinkels (Fehler von bis zu 90° festgestellt). Selbiges gilt auch für Positionsparameter, gemessen durch in Smartphones eingebaute Empfänger für Signale globaler Navigationssatellitensysteme (GNSS). Wie aus der Literatur zu entnehmen ist, lassen sich unter besten Bedingungen Lagegenauigkeiten von etwa 5 m erreichen. Abseits davon sind Fehler von mehreren 10 m zu erwarten. Infolgedessen ist von einer direkten Georeferenzierung von Bildmessungen mittels aktueller Smartphone-Technologie abzusehen. Unter Berücksichtigung der gewonnenen Erkenntnisse wurde die Pegel-App Open Water Levels (OWL) entwickelt, deren methodische Entwicklung und Implementierung den Kern der Arbeit bildete. OWL ermöglicht die flexible Messung von Wasserständen via Crowdsourcing, ohne dabei zusätzliche Ausrüstung zu verlangen oder auf spezifische Flussabschnitte beschränkt zu sein. Datenaufnahme und Verarbeitung erfolgen direkt im Feld, so dass die Pegelinformationen sofort verfügbar sind. Praktisch nimmt der Anwender mit OWL eine kurze Zeitraffersequenz eines Flussufers auf, die zur Berechnung einer Raum-Zeit-Textur dient und die Erkennung der Wasserlinie ermöglicht. Zur Übersetzung der Bildmessung in den 3D-Objektraum wird aus vorhandenen 3D-Daten des zu untersuchenden Flussabschnittes ein synthetisches, photorealistisches Abbild der Aufnahmesituation erstellt. Erforderliche Näherungen der Bildorientierungsparameter werden von Smartphone-Sensoren und GNSS gemessen. Die Zuordnung von Kamerabild und synthetischem Bild erlaubt die Bestimmung der inneren und äußeren Orientierungsparameter mittels räumlichen Rückwärtsschnitt. Nach Rekonstruktion der Aufnahmesituation lässt sich die im Bild gemessene 2D-Wasserlinie in den 3D-Objektraum projizieren und der vorherrschende Wasserstand im Referenzsystem der 3D-Daten ableiten. Im Soll-Ist-Vergleich mit konventionell gemessenen Pegeldaten zeigt OWL ein erreichbares Genauigkeitspotential von durchschnittlich 2 cm, insofern synthetisches und reales Kamerabild einen möglichst konsistenten Bildinhalt aufweisen und die Wasserlinie zuverlässig detektiert werden kann. In der vorliegenden Dissertation werden damit verbundene geometrische und radiometrische Probleme ausführlich diskutiert sowie Lösungsansätze, auf der Basis fortschreitender Entwicklungen von Smartphone-Technologie und Bildverarbeitung sowie der zunehmenden Verfügbarkeit von 3D-Referenzdaten, in der Synthese der Arbeit vorgestellt. Mit der gegenwärtig als Betaversion vorliegenden und auf ausgewählten Geräten getesteten App Open Water Levels wurde eine Basis geschaffen, die mit kontinuierlicher Weiterentwicklung eine finale Freigabe für das Crowdsourcing von Wasserständen und damit den Aufbau neuer und die Erweiterung bestehender Monitoring-Netzwerke anstrebt

    Mobile Sensor Data Measurements and Analysis for Fall Detection in Elderly Health Care

    Get PDF
    In recent years, increased life expectancy in Finland and other parts of the world have led to an aging population. Accidental falls can cause severe injuries to elderly people, thereby, negatively impacting their quality of life and in some cases resulting in death. Accidental falls is a major public health care challenge. Real time monitoring of human activity can provide insight into an individual’s functional ability and gives an indication of their ability to live independently. Automatic detection of falls enables us to provide timely medical attention, thereby, reducing the negative consequences of falls. This paradigm of home based health promotes independent living and reduces the burden on caregivers. The aim of the thesis is to log real world sensory data from multiple sensors on board mobile devices and develop suitable algorithms to extract information from the data to solve the problem of detecting when elderly people fall down. In order to log the data, an Android application is developed that collects data from the various onboard sensors and stores it in a text file. The developed application is used to take measurements of sensor data pertaining to various human activities. Then patterns in the data are then analysed and exploited to distinguish between normal day-to-day activities and people falling down. To detect falls, we develop two algorithms based on statistical detection theory and convex optimization, respectively and also analyze the efficacy of these methods

    Artificial Neural Networks (ANNs) for Spectral Interference Correction Using a Large-Size Spectrometer and ANN-Based Deep Learning for a Miniature One

    Get PDF
    Artificial neural networks (ANNs) are evaluated for spectral interference correction using simulated and experimentally obtained spectral scans. Using the same data set (where possible), the predictive ability of shallow depth ANNs was validated against partial least squares (PLS, a traditional chemometrics method). Spectral interference (in the form of overlaps between spectral lines) is a key problem in large-size, long focal length inductively coupled plasma-optical emission spectrometry (ICP-OES). Unless corrected, spectral interference can be sufficiently severe to the point of preventing precise and accurate analytical determinations. In miniaturized, microplasma-based optical emission spectrometry with a portable, short focal length spectrometer (having poorer resolution than its large-size counterpart), spectral interference becomes even more severe. To correct it, we are evaluating use of deep learning ANNs. Details are provided in this chapter
    • …
    corecore