323 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Breast Cancer: Modelling and Detection

    Get PDF
    This paper reviews a number of the mathematical models used in cancer modelling and then chooses a specific cancer, breast carcinoma, to illustrate how the modelling can be used in aiding detection. We then discuss mathematical models that underpin mammographic image analysis, which complements models of tumour growth and facilitates diagnosis and treatment of cancer. Mammographic images are notoriously difficult to interpret, and we give an overview of the primary image enhancement technologies that have been introduced, before focusing on a more detailed description of some of our own recent work on the use of physics-based modelling in mammography. This theoretical approach to image analysis yields a wealth of information that could be incorporated into the mathematical models, and we conclude by describing how current mathematical models might be enhanced by use of this information, and how these models in turn will help to meet some of the major challenges in cancer detection

    Microcalcifications Detection Using Image And Signal Processing Techniques For Early Detection Of Breast Cancer

    Get PDF
    Breast cancer has transformed into a severe health problem around the world. Early diagnosis is an important factor to survive this disease. The earliest detection signs of potential breast cancer that is distinguishable by current screening techniques are the presence of microcalcifications (MCs). MCs are small crystals of calcium apatite and their normal size ranges from 0.1mm to 0.5mm single crystals to groups up to a few centimeters in diameter. They are the first indication of breast cancer in more than 40% of all breast cancer cases, making their diagnosis critical. This dissertation proposes several segmentation techniques for detecting and isolating point microcalcifications: Otsu’s Method, Balanced Histogram Thresholding, Iterative Method, Maximum Entropy, Moment Preserving, and Genetic Algorithm. These methods were applied to medical images to detect microcalcifications. In this dissertation, results from the application of these techniques are presented and their efficiency for early detection of breast cancer is explained. This dissertation also explains theories and algorithms related to these techniques that can be used for breast cancer detection

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    Detecting microcalcification clusters in digital mammograms: Study for inclusion into computer aided diagnostic prompting system

    Full text link
    Among signs of breast cancer encountered in digital mammograms radiologists point to microcalcification clusters (MCCs). Their detection is a challenging problem from both medical and image processing point of views. This work presents two concurrent methods for MCC detection, and studies their possible inclusion to a computer aided diagnostic prompting system. One considers Wavelet Domain Hidden Markov Tree (WHMT) for modeling microcalcification edges. The model is used for differentiation between MC and non-MC edges based on the weighted maximum likelihood (WML) values. The classification of objects is carried out using spatial filters. The second method employs SUSAN edge detector in the spatial domain for mammogram segmentation. Classification of objects as calcifications is carried out using another set of spatial filters and Feedforward Neural Network (NN). A same distance filter is employed in both methods to find true clusters. The analysis of two methods is performed on 54 image regions from the mammograms selected randomly from DDSM database, including benign and cancerous cases as well as cases which can be classified as hard cases from both radiologists and the computer perspectives. WHMT/WML is able to detect 98.15% true positive (TP) MCCs under 1.85% of false positives (FP), whereas the SUSAN/NN method achieves 94.44% of TP at the cost of 1.85% for FP. The comparison of these two methods suggests WHMT/WML for the computer aided diagnostic prompting. It also certifies the low false positive rates for both methods, meaning less biopsy tests per patient
    • 

    corecore