216 research outputs found

    ๊ผฌ๋ฆฌ๋‚ ๊ฐœ ์—†๋Š” ๋‚ ๊ฐฏ์ง“ ์ดˆ์†Œํ˜• ๋น„ํ–‰์ฒด์˜ ์ž์„ธ์กฐ์ ˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๊น€ํ˜„์ง„.์ตœ๊ทผ ์ƒ์ฒด๋ชจ๋ฐฉ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ปค์ง€๋ฉด์„œ ์ƒ๋ช…์ฒด์˜ ๊ตฌ์กฐ, ์™ธํ˜•, ์›€์ง์ž„, ํ–‰๋™์„ ๋ถ„์„ํ•˜์—ฌ ๊ทธ๋“ค์˜ ์žฅ์ ์„ ๋กœ๋ด‡์— ์ ์šฉ์‹œ์ผœ ๊ธฐ์กด์˜ ๋กœ๋ด‡์ด ํ•ด๊ฒฐํ•  ์ˆ˜ ์—†๊ฑฐ๋‚˜ ํŠน๋ณ„ํ•œ ์ž„๋ฌด๋ฅผ ์ข€ ๋” ํšจ๊ณผ, ํšจ์œจ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์‹œ๋„๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๋„๋Š” ๋ฌด์ธ๋น„ํ–‰์ฒด ๊ฐœ๋ฐœ์—๋„ ์ ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๋‚ ๊ฐฏ์ง“ ๋น„ํ–‰์ฒด๊ฐ€ ์ด์— ํ•ด๋‹น๋œ๋‹ค. ๋‚ ๊ฐœ์ง“ ๋น„ํ–‰์ฒด๋Š” ๋‚ ๊ฐœ์˜ ๋ฐ˜๋ณต์šด๋™์„ ํ†ตํ•ด ๋ฐœ์ƒํ•˜๋Š” ํž˜์„ ํ†ตํ•ด ๋น„ํ–‰ํ•˜๋Š” ๋น„ํ–‰์ฒด๋กœ ์ผ๋ฐ˜์ ์œผ๋กœ ๊ผฌ๋ฆฌ๋‚ ๊ฐœ์˜ ์œ ๋ฌด์— ๋”ฐ๋ผ ์ƒˆ๋ฅผ ๋ชจ๋ฐฉํ•œ ๋น„ํ–‰์ฒด(๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด)์™€ ๊ณค์ถฉ์„ ๋ชจ๋ฐฉํ•œ ๋น„ํ–‰์ฒด(๋ฌด๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด)๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌด๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด์˜ ๊ฒฝ์šฐ ์ œ์ž๋ฆฌ ๋น„ํ–‰์„ ํ•  ์ˆ˜ ์žˆ๊ณ , ํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ  ๋ฌด๊ฒŒ๊ฐ€ ๊ฐ€๋ฒผ์›Œ ๊ณต๊ธฐ์ €ํ•ญ๋„ ์ค„์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋‚ ๋ ตํ•œ ๋น„ํ–‰์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ์ˆ˜๋™ ์•ˆ์ •์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ์ œ์–ด๋ฉด์ด ์ถฉ๋ถ„ํ•˜์ง€ ์•Š๊ณ  ์ถ”๋ ฅ ์ƒ์„ฑ๊ณผ ๋™์‹œ์— 3์ถ•์œผ๋กœ์˜ ์ œ์–ด ๋ชจ๋ฉ˜ํŠธ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ๋ณต์žกํ•œ ๋งค์ปค๋‹ˆ์ฆ˜์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ํŠน์ง•์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ €์ž์˜ ๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด์˜ ์—ฐ๊ตฌ๊ฐœ๋ฐœ ์‚ฌ๋ก€๋ฅผ ํ† ๋Œ€๋กœ ์ž์œจ ๋น„ํ–‰์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌด๋ฏธ์ตํ˜• ๋น„ํ–‰์ฒด๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์š”์†Œ๊ธฐ์ˆ ๋“ค๊ณผ ์ดˆ๊ธฐ ๋น„ํ–‰์ฒด ๊ฐœ๋ฐœ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ํ•ด๋‹น ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์ €์ž๋Š” ์‹œ์ค‘์—์„œ ํŒ๋งค๋˜๊ณ  ์žˆ๋Š” RC์žฅ๋‚œ๊ฐ์„ ํ™œ์šฉํ•ด 30 gram ์ดํ•˜์˜ ๋ฌด๊ฒŒ๋ฅผ ๊ฐ€์ง€๊ณ  30cm3 ์ด๋‚ด์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋Š” ๋ฌด๋ฏธ์ตํ˜• ๋‚ ๊ฐฏ์ง“ ๋น„ํ–‰์ฒด๋ฅผ ๊ฐœ๋ฐœ์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋น„ํ–‰์ฒด ๋‚ด๋ถ€์—๋Š” ๊ตฌ๋™๊ธฐ๋กœ DC ๋ชจํ„ฐ์™€ ์„œ๋ณด๋ชจํ„ฐ๊ฐ€ ์กด์žฌํ•˜๋ฉฐ, DC ๋ชจํ„ฐ๋Š” ๋‚ ๊ฐฏ์ง“์„ ์ผ์œผํ‚ค๋Š” ๊ธฐ์–ด ๋ฐ•์Šค๋ฅผ ์ž‘๋™์‹œ์ผœ ๋น„ํ–‰์ฒด์˜ ๋ฌด๊ฒŒ๋ฅผ ์ง€ํƒฑํ•˜๊ธฐ ์œ„ํ•œ thrust๋ฅผ ์ƒ์„ฑํ•˜๋ฉฐ roll์ถ• ๋ฐฉํ–ฅ์œผ๋กœ์˜ moment ์ƒ์„ฑ์— ๊ด€์—ฌํ•˜๋ฉฐ, ์„œ๋ณด๋ชจํ„ฐ๋Š” ๋‚ ๊ฐฏ์ง“์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ขŒ์šฐ thrust์˜ ๋ฐฉํ–ฅ์„ ์กฐ์ ˆํ•˜์—ฌ pitch ์™€ yaw ์ถ•์œผ๋กœ์˜ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ์ƒ์„ฑํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ๋น„ํ–‰์ฒด ๋‚ด๋ถ€์—๋Š” ์•„๋‘์ด๋…ธ ๋ณด๋“œ ๊ธฐ๋ฐ˜์˜ ๋งˆ์ดํฌ๋กœํ”„๋กœ์„ธ์„œ๊ฐ€ ํƒ‘์žฌ๋˜์–ด ์žˆ์–ด ๋น„ํ–‰์ฒด๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋ธ”๋ฃจํˆฌ์Šค ํ†ต์‹  ๋ชจ๋“ˆ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์™ธ๋ถ€์™€ ํ†ต์‹  ์—ญ์‹œ ๊ฐ€๋Šฅํ•˜๋‹ค. ๋น„ํ–‰์ฒด์˜ ์ž์„ธ๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ตฌ๋™๊ธฐ์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ํž˜์˜ ๋ฌผ๋ฆฌ๋Ÿ‰์„ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‚ ๊ฐฏ์ง“ ๋ฉ”์ปค๋‹ˆ์ฆ˜์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํž˜์„ ์ธก์ •ํ•˜๋Š” ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ธก์ •์‹คํ—˜์„ ํ†ตํ•ด DC๋ชจํ„ฐ ์ž…๋ ฅ ๋Œ€๋น„ thrust ํฌ๊ธฐ, ์„œ๋ณด๋ชจํ„ฐ command ์ž…๋ ฅ ๋Œ€๋น„ moment ํฌ๊ธฐ ๋“ฑ์˜ ๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‚ ๊ฐฏ์ง“ ๋น„ํ–‰์ฒด๋ฅผ ๊ณต์ค‘์— ๋„์šธ ์ˆ˜ ์žˆ๋Š” ์ถฉ๋ถ„ํ•œ ํฌ๊ธฐ์˜ thrust๋ฅผ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ์ž์„ธ ์ œ์–ด๋ฅผ ์œ„ํ•œ ๋ชจ๋ฉ˜ํŠธ ์ƒ์„ฑ ์—ญ์‹œ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋น„ํ–‰์ฒด์˜ ์ž์„ธ๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” 3์ถ• ๋ฐฉํ–ฅ์œผ๋กœ์˜ ์šด๋™๋ฐฉ์ •์‹์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด roll, pitch, yaw ์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ๋น„ํ–‰์ฒด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ํž˜๊ณผ ํšŒ์ „ ์šด๋™๊ณผ ๊ด€๋ จํ•œ ์šด๋™๋ฐฉ์ •์‹์„ ์œ ๋„ํ–ˆ์œผ๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ๋น„ํ–‰์ฒด์˜ ์ž์„ธ๋ฅผ ์•ˆ์ •ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” PID ์ œ์–ด๊ธฐ ํ˜•ํƒœ์˜ ์ œ์–ด๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋น„ํ–‰์ฒด์˜ ๊ถค์ ์ถ”์ข… ์ œ์–ด๋ฅผ ์œ„ํ•ด ๋‚ด๋ถ€์˜ ์ž์„ธ ์ œ์–ด๊ธฐ์— ๋น„ํ–‰์ฒด์˜ ์œ„์น˜๋ฅผ ํ† ๋Œ€๋กœ ๊ณ„์‚ฐ๋˜๋Š” ์ถ”๊ฐ€์ ์ธ ์™ธ๋ถ€ ์ œ์–ด๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜์—ฌ ์ด์ค‘๋ฃจํ”„ ์ œ์–ด๊ธฐ ํ˜•ํƒœ๋ฅผ ์ ์šฉ์‹œ์ผœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๋น„ํ–‰์ฒด์˜ ์ž์„ธ ์ œ์–ด์™€ ๊ถค์  ์ถ”์ข… ์ œ์–ด๊ฐ€ ์ด๋ฃจ์–ด์ง์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœํ•œ ๋น„ํ–‰์ฒด์™€ ์•ž์„œ ์„ค๊ณ„ํ•œ ์ œ์–ด๊ธฐ๊ฐ€ ์‚ฌ์šฉ์ž์˜ ์˜๋„์— ๋งž๋Š” ์„ฑ๋Šฅ์„ ๋‚ด๋Š”์ง€ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์ž์ด๋กœ ์‹คํ—˜์žฅ์น˜๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ์ž์„ธ ์ œ์–ด ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ•ด๋‹น ์‹คํ—˜์žฅ์น˜๋Š” roll, pitch, yaw ์ถ•์œผ๋กœ ํšŒ์ „์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ ์‹คํ—˜์žฅ์น˜ ์ž์ฒด์˜ ๋ฌด๊ฒŒ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด MDF ์†Œ์žฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌ์กฐ๋ฌผ๋ฅผ ๋งŒ๋“ค์—ˆ๋‹ค. roll, pitch, yaw 3์ถ•์ด ๊ฐ๊ฐ ๋…๋ฆฝ์ ์œผ๋กœ ์ œ์–ดํ•˜๋Š” ๊ฒƒ๊ณผ 3์ถ•์„ ๋™์‹œ์— ์ œ์–ดํ•˜๋Š” 2๊ฐ€์ง€ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•˜์˜€์œผ๋ฉฐ ์•ž์„œ ์„ค๊ณ„ํ•œ ์ œ์–ด๊ธฐ๊ฐ€ ํ•ด๋‹น ์‹คํ—˜ ์žฅ์น˜ ๋‚ด๋ถ€์—์„œ ์‚ฌ์šฉ์ž์˜ ์˜๋„์— ๋งž๊ฒŒ ์ œ์–ด ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š”์ง€ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ถค์  ์ถ”์ข…์ œ์–ด๋ฅผ ์œ„ํ•ด์„œ๋Š” 2๊ฐ€์ง€ ๋น„ํ–‰ ์ƒํ™ฉ์„ ์„ค์ •ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ๊ฒฝ์šฐ, ์ฒœ์žฅ๊ณผ ๋น„ํ–‰์ฒด ์ƒ๋‹จ๋ถ€์— ์‹ค์„ ์—ฐ๊ฒฐํ•˜์—ฌ 2D ํ‰๋ฉด์ƒ์—์„œ ๋น„ํ–‰์ฒด๊ฐ€ ์ฃผ์›Œ์ง„ ๊ถค์ ์— ๋”ฐ๋ผ ์›€์ง์ด๋Š”์ง€, ๋‘ ๋ฒˆ์งธ ๊ฒฝ์šฐ, ๋น„ํ–‰์ฒด ์ƒ๋‹จ๋ถ€์— ํ—ฌ๋ฅจ์ด ์ฃผ์ž…๋œ ํ’์„ ์„ ์—ฐ๊ฒฐ์‹œ์ผœ 3D ๊ณต๊ฐ„์ƒ์—์„œ ์ฃผ์›Œ์ง„ ๊ถค์ ์„ ๋”ฐ๋ผ ์ถ”์ข… ๋น„ํ–‰ํ•˜๋Š”์ง€๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ์ƒํ™ฉ์ด๋‹ค. ๋‘ ๊ฐ€์ง€ ์ƒํ™ฉ์—์„œ ๋ชจ๋‘ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ๊ถค์ ์„ ๋น„ํ–‰์ฒด๊ฐ€ ์ž˜ ์ถ”์ข…ํ•˜๋Š”์ง€๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋์œผ๋กœ, ์™ธ๋ถ€ ์žฅ์น˜(์‹ค, ํ’์„ )๋ฅผ ์ œ๊ฑฐํ•˜์—ฌ ๊ณต์ค‘์—์„œ ๋น„ํ–‰์ฒด๊ฐ€ ์ œ์ž๋ฆฌ ๋น„ํ–‰์„ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๊ฒ€์ฆํ•˜๋Š” ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, 15์ดˆ๊ฐ€๋Ÿ‰ 1m3 ๊ณต๊ฐ„ ๋‚ด์—์„œ ์ œ์ž๋ฆฌ ๋น„ํ–‰์ด ์ด๋ฃจ์–ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.Flapping wing micro air vehicles (FWMAVs) that generate thrust and lift by flapping their wings are regarded as promising flight vehicles because of their advantages in terms of similar appearance and maneuverability to natural creatures. Reducing weight and air resistance, insect-inspired tailless FWMAVs are an attractive aerial vehicle rather than bird-inspired FWMAVs. However, they are challenging platforms to achieve autonomous flight because they have insufficient control surfaces to secure passive stability and a complicated wing mechanism for generating three-axis control moments simultaneously. In this thesis, as preliminary autonomous flight research, I present the study of an attitude regulation and trajectory tracking control of a tailless FWMAV developed. For these tasks, I develop my platform, which includes two DC motors for generating thrust to support its weight and servo motors for generating three-axis control moments to regulate its flight attitude. First, I conduct the force and moment measurement experiment to confirm the magnitude and direction of the lift and moment generated from the wing mechanism. From the measurement test, it is confirmed that the wing mechanism generates enough thrust to float the vehicle and control moments for attitude regulation. Through the dynamic equations in the three-axis direction of the vehicle, a controller for maintaining a stable attitude of the vehicle can be designed. To this end, a dynamic equation related to the rotational motion in the roll, pitch, and yaw axes is derived. Based on the derived dynamic equations, we design a proportional-integral-differential controller (PID) type controller to compensate for the attitude of the vehicle. Besides, we use a multi-loop control structure (inner-loop: attitude control, outer-loop: position control) to track various trajectories. Simulation results show that the designed controller is effective in regulating the platforms attitude and tracking a trajectory. To check whether the developed vehicle and the designed controller are operating effectively to regulate its attitude, I design a lightweight gyroscope apparatus using medium-density-fiberboard (MDF) material. The rig is capable of freely rotating in the roll, pitch, and yaw axes. I consider two situations in which each axis is controlled independently, and all axes are controlled simultaneously. In both cases, attitude regulation is properly performed. Two flight situations are considered for the trajectory tracking experiment. In the first case, a string connects between the ceiling and the top of the platform. In the second case, the helium-filled balloon is connected to the top of the vehicle. In both cases, the platform tracks various types of trajectories well in error by less than 10 cm. Finally, an experiment is conducted to check whether the tailless FWMAV could fly autonomously in place by removing external devices (string, balloon), and the tailless FWMAV flies within 1 m^3 space for about 15 seconds1.Introduction 1 1.1 Background & Motivation 1 1.2 Literature review 3 1.3 Thesis contribution 7 1.4 Thesis outline 8 2.Design of tailless FWMAV 13 2.1 Platform appearance 13 2.2 Flight control system 17 2.3 Principle of actuator mechanism 18 3.Force measurement experiment 28 3.1 Measurement setup 28 3.2 Measurement results 30 4.Dynamics & Controller design 37 4.1 Preliminary 37 4.2 Dynamics & Attitude control 39 4.2.1 Roll direction 41 4.2.2 Pitch direction 43 4.2.3 Yaw direction 45 4.2.4 PID control 47 4.3 Trajectory tracking control 48 5.Attitude regulation experiments 50 5.1 Design of gyroscope testbed 50 5.2 Experimental environment 52 5.3 Roll axis free 53 5.3.1 Simulation 54 5.3.2 Experiment 55 5.4 Pitch axis free 56 5.4.1 Simulation 57 5.4.2 Experiment 58 5.5 Yaw axis free 59 5.5.1 Simulation 59 5.5.2 Experiment 60 5.6 All axes free 60 5.6.1 Simulation 60 5.6.2 Experiment 61 5.7 Design of universal joint testbed & Experiment 64 6.Trajectory tracking 68 6.1 Simulation 68 6.2 Preliminary 69 6.3 Experiment: Tied-to-the-ceiling 70 6.4 Experiment: Hung-to-a-balloon 71 6.5 Summary 72 6.6 Hovering flight 73 7.Conclusion 83 A Appendix: Wing gearbox 85 A.1 4-bar linkage structure 85 B Appendix: Disturbance observer (DOB) 87 B.1 DOB controller 87 B.2 Simulation 89 B.2.1 Step input 89 B.2.2 Sinusoid input 91 B.3 Experiment 92 References 95Docto

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Selected Papers from the ICEUBI2019 - International Congress on Engineering - Engineering for Evolution

    Get PDF
    Energies SI Book "Selected Papers from the ICEUBI2019 โ€“ International Congress on Engineering โ€“ Engineering for Evolution", groups six papers into fundamental engineering areas: Aeronautics and Astronautics, and Electrotechnical and Mechanical Engineering. ICEUBIโ€”International Congress on Engineering is organized every two years by the Engineering Faculty of Beira Interior University, Portugal, promoting engineering in society through contact among researchers and practitioners from different fields of engineering, and thus encouraging the dissemination of engineering research, innovation, and development. All selected papers are interrelated with energy topics (fundamentals, sources, exploration, conversion, and policies), and provide relevant data for academics, research-focused practitioners, and policy makers

    DESIGN, ANALYSIS, AND TESTING OF A FLAPPING WING MINIATURE AIR VEHICLE

    Get PDF
    Flapping wing miniature air vehicles (MAVs) offer several advantageous performance benefits, relative to fixed-wing and rotary-wing MAVs. The goal of this thesis is to design a flapping wing MAV that achieves improved performance by focusing on the flapping mechanism and the spar arrangement in the wings. Two variations of the flapping mechanism are designed and tested, both using compliance as a technique for improved functionality. In the design of these mechanisms, kinematics and dynamics simulation is used to evaluate how forces encountered during wing flapping affect the mechanism. Finite element analysis is used to evaluate the stress and deformation of the mechanism, such that a lightweight yet functional design can be realized. The wings are tested using experimental techniques. These techniques include high speed photography, stiffness measurement, and lift and thrust measurements. Experimentally measured force results are validated with a series of flight tests. A framework for iterative improvement of the MAV is described, that uses the results of physical testing and simulations to investigate the underlying causes of MAV performance aspects; and seeks to capture those beneficial aspects that will allow for performance improvements. Wings and flapping mechanisms designed in this thesis are used to realize a bird-inspired flapping wing miniature air vehicle. This vehicle is capable of radio controlled flights indoors and outdoors in winds up to 6.7m/s with controlled steering, ascent, and descent, as well as payload carrying abilities

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    X-HALE: the Development of a Research Platform for the Validation of Nonlinear Aeroelastic Codes

    Get PDF
    In conjunction with the Air Force Institute of Technology (AFIT) and the Air Force Research Laboratory (AFRL), the University of Michigan has designed and is currently building a remotely piloted aircraft (RPA) experimental high altitude long endurance (X-HALE) aircraft to collect non-linear aeroelastic data to validate HALE aircraft design codes developed by academia, industry, and the federal government. While X-HALE is representative of HALE aircraft, the manufacturing and evaluation techniques are applicable to larger full size HALE aircraft such as the concepts being developed under Defense Advanced Research Projects Agency\u27s (DARPA\u27s) Vulture program. This paper documents the development of the X-HALE model to date including a history of the programmatic decisions, basic model configuration, geometric considerations, sensor and system architecture, and manufacturing challenges. Lessons learned from the prototyping include the evolutionary growth of X-HALE\u27s joiner blocks and the manufacturing process of the composite wings. Furthermore, late in the design process, a series of aeroelastic simulations using the Nonlinear Aeroelastic Simulation Toolbox (NAST) developed at the University of Michigan demonstrated the need for a rotating vertical/horizontal stabilizer to aid in the recovery of the vehicle from unstable nonlinear coupled lateral dynamic dutch roll like motion. The documentation and development of X-HALE is critical to the programmatic goal of providing a complete nonlinear aeroelastic data set for the validation of nonlinear aeroelastic analytical tools for government, industry and academia

    Neuroinspired control strategies with applications to flapping flight

    Get PDF
    This dissertation is centered on a theoretical, simulation, and experimental study of control strategies which are inspired by biological systems. Biological systems, along with sufficiently complicated engineered systems, often have many interacting degrees of freedom and need to excite large-displacement oscillations in order to locomote. Combining these factors can make high-level control design difficult. This thesis revolves around three different levels of abstraction, providing tools for analysis and design. First, we consider central pattern generators (CPGs) to control flapping-flight dynamics. The key idea here is dimensional reduction - we want to convert complicated interactions of many degrees of freedom into a handful of parameters which have intuitive connections to the overall system behavior, leaving the control designer unconcerned with the details of particular motions. A rigorous mathematical and control theoretic framework to design complex three-dimensional wing motions is presented based on phase synchronization of nonlinear oscillators. In particular, we show that flapping-flying dynamics without a tail or traditional aerodynamic control surfaces can be effectively controlled by a reduced set of central pattern generator parameters that generate phase-synchronized or symmetry-breaking oscillatory motions of two main wings. Furthermore, by using a Hopf bifurcation, we show that tailless aircraft (inspired by bats) alternating between flapping and gliding can be effectively stabilized by smooth wing motions driven by the central pattern generator network. Results of numerical simulation with a full six-degree-of-freedom flight dynamic model validate the effectiveness of the proposed neurobiologically inspired control approach. Further, we present experimental micro aerial vehicle (MAV) research with low-frequency flapping and articulated wing gliding. The importance of phase difference control via an abstract mathematical model of central pattern generators is confirmed with a robotic bat on a 3-DOF pendulum platform. An aerodynamic model for the robotic bat based on the complex wing kinematics is presented. Closed loop experiments show that control dimension reduction is achievable - unstable longitudinal modes are stabilized and controlled using only two control parameters. A transition of flight modes, from flapping to gliding and vice-versa, is demonstrated within the CPG control scheme. The second major thrust is inspired by this idea that mode switching is useful. Many bats and birds adopt a mixed strategy of flapping and gliding to provide agility when necessary and to increase overall efficiency. This work explores dwell time constraints on switched systems with multiple, possibly disparate invariant limit sets. We show that, under suitable conditions, trajectories globally converge to a superset of the limit sets and then remain in a second, larger superset. We show the effectiveness of the dwell-time conditions by using examples of nonlinear switching limit cycles from our work on flapping flight. This level of abstraction has been found to be useful in many ways, but it also produces its own challenges. For example, we discuss death of oscillation which can occur for many limit-cycle controllers and the difficulty in incorporating fast, high-displacement reflex feedback. This leads us to our third major thrust - considering biologically realistic neuron circuits instead of a limit cycle abstraction. Biological neuron circuits are incredibly diverse in practice, giving us a convincing rationale that they can aid us in our quest for flexibility. Nevertheless, that flexibility provides its own challenges. It is not currently known how most biological neuron circuits work, and little work exists that connects the principles of a neuron circuit to the principles of control theory. We begin the process of trying to bridge this gap by considering the simplest of classical controllers, PD control. We propose a simple two-neuron, two-synapse circuit based on the concept that synapses provide attenuation and a delay. We present a simulation-based method of analysis, including a smoothing algorithm, a steady-state response curve, and a system identification procedure for capturing differentiation. There will never be One True Control Method that will solve all problems. Nature's solution to a diversity of systems and situations is equally diverse. This will inspire many strategies and require a multitude of analysis tools. This thesis is my contribution of a few

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 185

    Get PDF
    This bibliography lists 462 reports, articles and other documents introduced into the NASA scientific and technical information system in February 1985. Aerodynamics, aeronautical engineering, aircraft design, aircraft stability and control, geophysics, social sciences, and space sciences are some of the areas covered

    Development of a Forced Oscillation Test Technique for Determination of MAV Stability Characteristics

    Get PDF
    This thesis presents the development and validation of a forced oscillation test technique for the determination of Micro Air Vehicle (MAV) stability characteristics. The test setup utilizes a scotch yoke mechanism to oscillate a MAV along a single axis at a fixed amplitude and frequency. The aerodynamic reaction forces to this sinusoidal perturbation are measured and converted into meaningful stability parameters. The purpose of this research is to demonstrate that forced oscillation testing is an effective means of measuring the stability parameters of a MAV. Initial tests show that the forced oscillation test process is returning results which match the expected trends. Comparison of the results to an analytical model of blade flapping shows that the experimental results are of the proper magnitude. It can be concluded from this research that forced oscillation testing is a feasible method for determining the stability parameters of MAVs
    • โ€ฆ
    corecore