10,230 research outputs found

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    A Novel Convex Relaxation for Non-Binary Discrete Tomography

    Full text link
    We present a novel convex relaxation and a corresponding inference algorithm for the non-binary discrete tomography problem, that is, reconstructing discrete-valued images from few linear measurements. In contrast to state of the art approaches that split the problem into a continuous reconstruction problem for the linear measurement constraints and a discrete labeling problem to enforce discrete-valued reconstructions, we propose a joint formulation that addresses both problems simultaneously, resulting in a tighter convex relaxation. For this purpose a constrained graphical model is set up and evaluated using a novel relaxation optimized by dual decomposition. We evaluate our approach experimentally and show superior solutions both mathematically (tighter relaxation) and experimentally in comparison to previously proposed relaxations

    Covariant velocity and density perturbations in quasi-Newtonian cosmologies

    Get PDF
    Recently a covariant approach to cold matter universes in the zero-shear hypersurfaces (or longitudinal) gauge has been developed. This approach reveals the existence of an integrability condition, which does not appear in standard non-covariant treatments. A simple derivation and generalization of the integrability condition is given, based on showing that the quasi-Newtonian models are a sub-class of the linearized `silent' models. The solution of the integrability condition implies a propagation equation for the acceleration. It is shown how the velocity and density perturbations are then obtained via this propagation equation. The density perturbations acquire a small relative-velocity correction on all scales, arising from the fully covariant general relativistic analysis.Comment: 11 pages Revtex; to appear Phys. Rev.
    corecore