310 research outputs found

    ARTIFICIAL IMMUNE SYSTEMS FOR INFORMATION FILTERING: FOCUSING ON PROFILE ADAPTATION

    Get PDF
    The human immune system has characteristics such as self-organisation, robustness and adaptivity that may be useful in the development of adaptive systems. One suitable application area for adaptive systems is Information Filtering (IF). Within the context of IF, learning and adapting user profiles is an important research area. In an individual profile, an IF system has to rely on the ability of the user profile to maintain a satisfactory level of filtering accuracy for as long as it is being used. This thesis explores a possible way to enable Artificial Immune Systems (AIS) to filter information in the context of profile adaptation. Previous work has investigated this issue from the perspective of self-organisation based on Autopoetic Theory. In contrast, this current work approaches the problem from the perspective of diversity inspired by the concept of dynamic clonal selection and gene library to maintain sufficient diversity. An immune inspired IF for profile adaptation is proposed and developed. This algorithm is demonstrated to work in detecting relevant documents by using a single profile to recognize a user’s interests and to adapt to changes in them. We employed a virtual user tested on a web document corpus to test the profile on learning of an emerging new topic of interest and forgetting uninteresting topics. The results clearly indicate the profile’s ability to adapt to frequent variations and radical changes in user interest. This work has focused on textual information, but it may have the potential to be applied in other media such as audio and images in which adaptivity to dynamic environments is crucial. These are all interesting future directions in which this work might develop

    CODA Algorithm: An Immune Algorithm for Reinforcement Learning Tasks

    Get PDF
    This document presents the design of an algorithm that takes on its basis: reinforcement learning, learning from demonstration and most importantly Artificial Immune Systems. The main advantage of this algorithm named CODA (Cognition from Data). Is; it can learn from limited data samples- that is given a single example and the algorithm will create its own knowledge. The algorithm imitates from the Natural Immune System the clonal procedure for obtaining a repertoire of antibodies from a single antigen. It also uses the self-organised memory in order to reduce searching time in the whole action-state space by searching in specific clusters. CODA algorithm is presented and explained in detail in order to understand how these three principles are used. The algorithm is explained with pseudocode, flowcharts and block diagrams. The clonal/mutation results are presented with a simple example. It can be seen graphically how new data that has a completely new probability distribution. Finally, the first application where CODA is used, a humanoid hand is presented. In this application the algorithm created affordable grasping postures from limited examples, creates its own knowledge and stores data in memory data in memory in order to recognise whether it has been on a similar situation

    Immunology as a metaphor for computational information processing : fact or fiction?

    Get PDF
    The biological immune system exhibits powerful information processing capabilities, and therefore is of great interest to the computer scientist. A rapidly expanding research area has attempted to model many of the features inherent in the natural immune system in order to solve complex computational problems. This thesis examines the metaphor in detail, in an effort to understand and capitalise on those features of the metaphor which distinguish it from other existing methodologies. Two problem domains are considered — those of scheduling and data-clustering. It is argued that these domains exhibit similar characteristics to the environment in which the biological immune system operates and therefore that they are suitable candidates for application of the metaphor. For each problem domain, two distinct models are developed, incor-porating a variety of immunological principles. The models are tested on a number of artifical benchmark datasets. The success of the models on the problems considered confirms the utility of the metaphor

    Review: An Analysis of Different Population based Optimization Techniques used for Optimum Allocation and Sizing of Distributed Generations in Distributed Network

    Get PDF
    ABSTRACT: This Paper presents a review on the discussion of different types of population based Artificial intelligence optimization techniques used in the distributed generations in Distributed Networks. With the growing popularity of the Distributed Generations in the recent world it is required to determine the optimal location and size of the Distributed generations along with the reduction of the loss, improvement of Voltage Profile and reliability at lowest cost. For this different types of optimization techniques are used such as Firefly Algorithm, Genetic Algorithm, BFO, PSO, Artificial Bee Colony, Clonal Selection Algorithm, Ant Colony Optimization etc. This population based optimization techniques are more flexible and fast optimization methods

    Machine diagnosis based on artificial immune systems

    Get PDF
    Nowadays, many of the manufactory and industrial system has a diagnosis system on top of it, responsible for ensuring the lifetime of the system itself. It achieves this by performing both diagnosis and error recovery procedures in real production time, on each of the individual parts of the system. There are many paradigms currently being used for diagnosis. However, they still fail to answer all the requirements imposed by the enterprises making it necessary for a different approach to take place. This happens mostly on the error recovery paradigms since the great diversity that is nowadays present in the industrial environment makes it highly unlikely for every single error to be fixed under a real time, no production stop, perspective. This work proposes a still relatively unknown paradigm to manufactory. The Artificial Immune Systems (AIS), which relies on bio-inspired algorithms, comes as a valid alternative to the ones currently being used. The proposed work is a multi-agent architecture that establishes the Artificial Immune Systems, based on bio-inspired algorithms. The main goal of this architecture is to solve for a resolution to the error currently detected by the system. The proposed architecture was tested using two different simulation environment, each meant to prove different points of views, using different tests. These tests will determine if, as the research suggests, this paradigm is a promising alternative for the industrial environment. It will also define what should be done to improve the current architecture and if it should be applied in a decentralised system

    Exploiting immunological metaphors in the development of serial, parallel and distributed learning algorithms

    Get PDF
    This thesis examines the use of immunological metaphors in building serial, parallel, and distributed learning algorithms. It offers a basic study in the development of biologically-inspired algorithms which merge inspiration from biology with known, standard computing technology to examine robust methods of computing. This thesis begins by detailing key interactions found within the immune system that provide inspiration for the development of a learning system. It then exploits the use of more processing power for the development of faster algorithms. This leads to the exploration of distributed computing resources for the examination of more biologically plausible systems. This thesis offers the following main contributions. The components of the immune system that exhibit the capacity for learning are detailed. A framework for discussing learning algorithms is proposed. Three properties of every learning algorithm-memory, adaptation, and decision-making-are identified for this framework, and traditional learning algorithms are placed in the context of this framework. An investigation into the use of immunological components for learning is provided. This leads to an understanding of these components in terms of the learning framework. A simplification of the Artificial Immune Recognition System (AIRS) immune-inspired learning algorithm is provided by employing affinity-dependent somatic hypermutation. A parallel version of the Clonal Selection Algorithm (CLONALG) immune learning algorithm is developed. It is shown that basic parallel computing techniques can provide computational benefits for this algorithm. Exploring this technology further, a parallel version of AIRS is offered. It is shown that applying these same parallel computing techniques to AIRS, while less scalable than when applied to CLONALG, still provides computational gains. A distributed approach to AIRS is offered, and it is argued that this approach provides a more biologically appealing model. The simple distributed approach is proposed in terms of an initial step toward a more complex, distributed system. Biological immune systems exhibit complex cellular interactions. The mechanisms of these interactions, while often poorly understood, hint at an extremely powerful information processing/problem solving system. This thesis demonstrates how the use of immunological principles coupled with standard computing technology can lead to the development of robust, biologically inspired learning algorithms.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    Get PDF
    Today\u27s predominantly-employed signature-based intrusion detection systems are reactive in nature and storage-limited. Their operation depends upon catching an instance of an intrusion or virus after a potentially successful attack, performing post-mortem analysis on that instance and encoding it into a signature that is stored in its anomaly database. The time required to perform these tasks provides a window of vulnerability to DoD computer systems. Further, because of the current maximum size of an Internet Protocol-based message, the database would have to be able to maintain 25665535 possible signature combinations. In order to tighten this response cycle within storage constraints, this thesis presents an Artificial Immune System-inspired Multiobjective Evolutionary Algorithm intended to measure the vector of trade-off solutions among detectors with regard to two independent objectives: best classification fitness and optimal hypervolume size. Modeled in the spirit of the human biological immune system and intended to augment DoD network defense systems, our algorithm generates network traffic detectors that are dispersed throughout the network. These detectors promiscuously monitor network traffic for exact and variant abnormal system events, based on only the detector\u27s own data structure and the ID domain truth set, and respond heuristically. The application domain employed for testing was the MIT-DARPA 1999 intrusion detection data set, composed of 7.2 million packets of notional Air Force Base network traffic. Results show our proof-of-concept algorithm correctly classifies at best 86.48% of the normal and 99.9% of the abnormal events, attributed to a detector affinity threshold typically between 39-44%. Further, four of the 16 intrusion sequences were classified with a 0% false positive rate

    Exploiting immunological metaphors in the development of serial, parallel and distributed learning algorithms

    Get PDF
    This thesis examines the use of immunological metaphors in building serial, parallel, and distributed learning algorithms. It offers a basic study in the development of biologically-inspired algorithms which merge inspiration from biology with known, standard computing technology to examine robust methods of computing. This thesis begins by detailing key interactions found within the immune system that provide inspiration for the development of a learning system. It then exploits the use of more processing power for the development of faster algorithms. This leads to the exploration of distributed computing resources for the examination of more biologically plausible systems. This thesis offers the following main contributions. The components of the immune system that exhibit the capacity for learning are detailed. A framework for discussing learning algorithms is proposed. Three properties of every learning algorithm-memory, adaptation, and decision-making-are identified for this framework, and traditional learning algorithms are placed in the context of this framework. An investigation into the use of immunological components for learning is provided. This leads to an understanding of these components in terms of the learning framework. A simplification of the Artificial Immune Recognition System (AIRS) immune-inspired learning algorithm is provided by employing affinity-dependent somatic hypermutation. A parallel version of the Clonal Selection Algorithm (CLONALG) immune learning algorithm is developed. It is shown that basic parallel computing techniques can provide computational benefits for this algorithm. Exploring this technology further, a parallel version of AIRS is offered. It is shown that applying these same parallel computing techniques to AIRS, while less scalable than when applied to CLONALG, still provides computational gains. A distributed approach to AIRS is offered, and it is argued that this approach provides a more biologically appealing model. The simple distributed approach is proposed in terms of an initial step toward a more complex, distributed system. Biological immune systems exhibit complex cellular interactions. The mechanisms of these interactions, while often poorly understood, hint at an extremely powerful information processing/problem solving system. This thesis demonstrates how the use of immunological principles coupled with standard computing technology can lead to the development of robust, biologically inspired learning algorithms
    • …
    corecore