270 research outputs found

    A discriminative latent variable-based "DE" classifier for Chinese–English SMT

    Get PDF
    Syntactic reordering on the source-side is an effective way of handling word order differences. The (DE) construction is a flexible and ubiquitous syntactic structure in Chinese which is a major source of error in translation quality. In this paper, we propose a new classifier model β€” discriminative latent variable model (DPLVM) β€” to classify the DE construction to improve the accuracy of the classification and hence the translation quality. We also propose a new feature which can automatically learn the reordering rules to a certain extent. The experimental results show that the MT systems using the data reordered by our proposed model outperform the baseline systems by 6.42% and 3.08% relative points in terms of the BLEU score on PB-SMT and hierarchical phrase-based MT respectively. In addition, we analyse the impact of DE annotation on word alignment and on the SMT phrase table

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    CCG-augmented hierarchical phrase-based statistical machine translation

    Get PDF
    Augmenting Statistical Machine Translation (SMT) systems with syntactic information aims at improving translation quality. Hierarchical Phrase-Based (HPB) SMT takes a step toward incorporating syntax in Phrase-Based (PB) SMT by modelling one aspect of language syntax, namely the hierarchical structure of phrases. Syntax Augmented Machine Translation (SAMT) further incorporates syntactic information extracted using context free phrase structure grammar (CF-PSG) in the HPB SMT model. One of the main challenges facing CF-PSG-based augmentation approaches for SMT systems emerges from the difference in the definition of the constituent in CF-PSG and the β€˜phrase’ in SMT systems, which hinders the ability of CF-PSG to express the syntactic function of many SMT phrases. Although the SAMT approach to solving this problem using β€˜CCG-like’ operators to combine constituent labels improves syntactic constraint coverage, it significantly increases their sparsity, which restricts translation and negatively affects its quality. In this thesis, we address the problems of sparsity and limited coverage of syntactic constraints facing the CF-PSG-based syntax augmentation approaches for HPB SMT using Combinatory Cateogiral Grammar (CCG). We demonstrate that CCG’s flexible structures and rich syntactic descriptors help to extract richer, more expressive and less sparse syntactic constraints with better coverage than CF-PSG, which enables our CCG-augmented HPB system to outperform the SAMT system. We also try to soften the syntactic constraints imposed by CCG category nonterminal labels by extracting less fine-grained CCG-based labels. We demonstrate that CCG label simplification helps to significantly improve the performance of our CCG category HPB system. Finally, we identify the factors which limit the coverage of the syntactic constraints in our CCG-augmented HPB model. We then try to tackle these factors by extending the definition of the nonterminal label to be composed of a sequence of CCG categories and augmenting the glue grammar with CCG combinatory rules. We demonstrate that our extension approaches help to significantly increase the scope of the syntactic constraints applied in our CCG-augmented HPB model and achieve significant improvements over the HPB SMT baseline

    Reordering in statistical machine translation

    Get PDF
    PhDMachine translation is a challenging task that its difficulties arise from several characteristics of natural language. The main focus of this work is on reordering as one of the major problems in MT and statistical MT, which is the method investigated in this research. The reordering problem in SMT originates from the fact that not all the words in a sentence can be consecutively translated. This means words must be skipped and be translated out of their order in the source sentence to produce a fluent and grammatically correct sentence in the target language. The main reason that reordering is needed is the fundamental word order differences between languages. Therefore, reordering becomes a more dominant issue, the more source and target languages are structurally different. The aim of this thesis is to study the reordering phenomenon by proposing new methods of dealing with reordering in SMT decoders and evaluating the effectiveness of the methods and the importance of reordering in the context of natural language processing tasks. In other words, we propose novel ways of performing the decoding to improve the reordering capabilities of the SMT decoder and in addition we explore the effect of improving the reordering on the quality of specific NLP tasks, namely named entity recognition and cross-lingual text association. Meanwhile, we go beyond reordering in text association and present a method to perform cross-lingual text fragment alignment, based on models of divergence from randomness. The main contribution of this thesis is a novel method named dynamic distortion, which is designed to improve the ability of the phrase-based decoder in performing reordering by adjusting the distortion parameter based on the translation context. The model employs a discriminative reordering model, which is combining several fea- 2 tures including lexical and syntactic, to predict the necessary distortion limit for each sentence and each hypothesis expansion. The discriminative reordering model is also integrated into the decoder as an extra feature. The method achieves substantial improvements over the baseline without increase in the decoding time by avoiding reordering in unnecessary positions. Another novel method is also presented to extend the phrase-based decoder to dynamically chunk, reorder, and apply phrase translations in tandem. Words inside the chunks are moved together to enable the decoder to make long-distance reorderings to capture the word order differences between languages with different sentence structures. Another aspect of this work is the task-based evaluation of the reordering methods and other translation algorithms used in the phrase-based SMT systems. With more successful SMT systems, performing multi-lingual and cross-lingual tasks through translating becomes more feasible. We have devised a method to evaluate the performance of state-of-the art named entity recognisers on the text translated by a SMT decoder. Specifically, we investigated the effect of word reordering and incorporating reordering models in improving the quality of named entity extraction. In addition to empirically investigating the effect of translation in the context of crosslingual document association, we have described a text fragment alignment algorithm to find sections of the two documents in different languages, that are content-wise related. The algorithm uses similarity measures based on divergence from randomness and word-based translation models to perform text fragment alignment on a collection of documents in two different languages. All the methods proposed in this thesis are extensively empirically examined. We have tested all the algorithms on common translation collections used in different evaluation campaigns. Well known automatic evaluation metrics are used to compare the suggested methods to a state-of-the art baseline and results are analysed and discussed

    Multilingual Neural Translation

    Get PDF
    Machine translation (MT) refers to the technology that can automatically translate contents in one language into other languages. Being an important research area in the field of natural language processing, machine translation has typically been considered one of most challenging yet exciting problems. Thanks to research progress in the data-driven statistical machine translation (SMT), MT is recently capable of providing adequate translation services in many language directions and it has been widely deployed in various practical applications and scenarios. Nevertheless, there exist several drawbacks in the SMT framework. The major drawbacks of SMT lie in its dependency in separate components, its simple modeling approach, and the ignorance of global context in the translation process. Those inherent drawbacks prevent the over-tuned SMT models to gain any noticeable improvements over its horizon. Furthermore, SMT is unable to formulate a multilingual approach in which more than two languages are involved. The typical workaround is to develop multiple pair-wise SMT systems and connect them in a complex bundle to perform multilingual translation. Those limitations have called out for innovative approaches to address them effectively. On the other hand, it is noticeable how research on artificial neural networks has progressed rapidly since the beginning of the last decade, thanks to the improvement in computation, i.e faster hardware. Among other machine learning approaches, neural networks are known to be able to capture complex dependencies and learn latent representations. Naturally, it is tempting to apply neural networks in machine translation. First attempts revolve around replacing SMT sub-components by the neural counterparts. Later attempts are more revolutionary by fundamentally changing the whole core of SMT with neural networks, which is now popularly known as neural machine translation (NMT). NMT is an end-to-end system which directly estimate the translation model between the source and target sentences. Furthermore, it is later discovered to capture the inherent hierarchical structure of natural language. This is the key property of NMT that enables a new training paradigm and a less complex approach for multilingual machine translation using neural models. This thesis plays an important role in the evolutional course of machine translation by contributing to the transition of using neural components in SMT to the completely end-to-end NMT and most importantly being the first of the pioneers in building a neural multilingual translation system. First, we proposed an advanced neural-based component: the neural network discriminative word lexicon, which provides a global coverage for the source sentence during the translation process. We aim to alleviate the problems of phrase-based SMT models that are caused by the way how phrase-pair likelihoods are estimated. Such models are unable to gather information from beyond the phrase boundaries. In contrast, our discriminative word lexicon facilitates both the local and global contexts of the source sentences and models the translation using deep neural architectures. Our model has improved the translation quality greatly when being applied in different translation tasks. Moreover, our proposed model has motivated the development of end-to-end NMT architectures later, where both of the source and target sentences are represented with deep neural networks. The second and also the most significant contribution of this thesis is the idea of extending an NMT system to a multilingual neural translation framework without modifying its architecture. Based on the ability of deep neural networks to modeling complex relationships and structures, we utilize NMT to learn and share the cross-lingual information to benefit all translation directions. In order to achieve that purpose, we present two steps: first in incorporating language information into training corpora so that the NMT learns a common semantic space across languages and then force the NMT to translate into the desired target languages. The compelling aspect of the approach compared to other multilingual methods, however, lies in the fact that our multilingual extension is conducted in the preprocessing phase, thus, no change needs to be done inside the NMT architecture. Our proposed method, a universal approach for multilingual MT, enables a seamless coupling with any NMT architecture, thus makes the multilingual expansion to the NMT systems effortlessly. Our experiments and the studies from others have successfully employed our approach with numerous different NMT architectures and show the universality of the approach. Our multilingual neural machine translation accommodates cross-lingual information in a learned common semantic space to improve altogether every translation direction. It is then effectively applied and evaluated in various scenarios. We develop a multilingual translation system that relies on both source and target data to boost up the quality of a single translation direction. Another system could be deployed as a multilingual translation system that only requires being trained once using a multilingual corpus but is able to translate between many languages simultaneously and the delivered quality is more favorable than many translation systems trained separately. Such a system able to learn from large corpora of well-resourced languages, such as English β†’ German or English β†’ French, has proved to enhance other translation direction of low-resourced language pairs like English β†’ Lithuania or German β†’ Romanian. Even more, we show that kind of approach can be applied to the extreme case of zero-resourced translation where no parallel data is available for training without the need of pivot techniques. The research topics of this thesis are not limited to broadening application scopes of our multilingual approach but we also focus on improving its efficiency in practice. Our multilingual models have been further improved to adequately address the multilingual systems whose number of languages is large. The proposed strategies demonstrate that they are effective at achieving better performance in multi-way translation scenarios with greatly reduced training time. Beyond academic evaluations, we could deploy the multilingual ideas in the lecture-themed spontaneous speech translation service (Lecture Translator) at KIT. Interestingly, a derivative product of our systems, the multilingual word embedding corpus available in a dozen of languages, can serve as a useful resource for cross-lingual applications such as cross-lingual document classification, information retrieval, textual entailment or question answering. Detailed analysis shows excellent performance with regard to semantic similarity metrics when using the embeddings on standard cross-lingual classification tasks
    • …
    corecore