28 research outputs found

    Highly-Smooth Zero-th Order Online Optimization Vianney Perchet

    Get PDF
    The minimization of convex functions which are only available through partial and noisy information is a key methodological problem in many disciplines. In this paper we consider convex optimization with noisy zero-th order information, that is noisy function evaluations at any desired point. We focus on problems with high degrees of smoothness, such as logistic regression. We show that as opposed to gradient-based algorithms, high-order smoothness may be used to improve estimation rates, with a precise dependence of our upper-bounds on the degree of smoothness. In particular, we show that for infinitely differentiable functions, we recover the same dependence on sample size as gradient-based algorithms, with an extra dimension-dependent factor. This is done for both convex and strongly-convex functions, with finite horizon and anytime algorithms. Finally, we also recover similar results in the online optimization setting.Comment: Conference on Learning Theory (COLT), Jun 2016, New York, United States. 201

    Dual Instrumental Method for Confounded Kernelized Bandits

    Full text link
    The contextual bandit problem is a theoretically justified framework with wide applications in various fields. While the previous study on this problem usually requires independence between noise and contexts, our work considers a more sensible setting where the noise becomes a latent confounder that affects both contexts and rewards. Such a confounded setting is more realistic and could expand to a broader range of applications. However, the unresolved confounder will cause a bias in reward function estimation and thus lead to a large regret. To deal with the challenges brought by the confounder, we apply the dual instrumental variable regression, which can correctly identify the true reward function. We prove the convergence rate of this method is near-optimal in two types of widely used reproducing kernel Hilbert spaces. Therefore, we can design computationally efficient and regret-optimal algorithms based on the theoretical guarantees for confounded bandit problems. The numerical results illustrate the efficacy of our proposed algorithms in the confounded bandit setting

    Improved Confidence Bounds for the Linear Logistic Model and Applications to Linear Bandits

    Full text link
    We propose improved fixed-design confidence bounds for the linear logistic model. Our bounds significantly improve upon the state-of-the-art bound by Li et al. (2017) via recent developments of the self-concordant analysis of the logistic loss (Faury et al., 2020). Specifically, our confidence bound avoids a direct dependence on 1/κ1/\kappa, where κ\kappa is the minimal variance over all arms' reward distributions. In general, 1/κ1/\kappa scales exponentially with the norm of the unknown linear parameter θ\theta^*. Instead of relying on this worst-case quantity, our confidence bound for the reward of any given arm depends directly on the variance of that arm's reward distribution. We present two applications of our novel bounds to pure exploration and regret minimization logistic bandits improving upon state-of-the-art performance guarantees. For pure exploration, we also provide a lower bound highlighting a dependence on 1/κ1/\kappa for a family of instances

    Learning without Smoothness and Strong Convexity

    Get PDF
    Recent advances in statistical learning and convex optimization have inspired many successful practices. Standard theories assume smoothness---bounded gradient, Hessian, etc.---and strong convexity of the loss function. Unfortunately, such conditions may not hold in important real-world applications, and sometimes, to fulfill the conditions incurs unnecessary performance degradation. Below are three examples. 1. The standard theory for variable selection via L_1-penalization only considers the linear regression model, as the corresponding quadratic loss function has a constant Hessian and allows for exact second-order Taylor series expansion. In practice, however, non-linear regression models are often chosen to match data characteristics. 2. The standard theory for convex optimization considers almost exclusively smooth functions. Important applications such as portfolio selection and quantum state estimation, however, correspond to loss functions that violate the smoothness assumption; existing convergence guarantees for optimization algorithms hence do not apply. 3. The standard theory for compressive magnetic resonance imaging (MRI) guarantees the restricted isometry property (RIP)---a smoothness and strong convexity condition on the quadratic loss restricted on the set of sparse vectors---via random uniform sampling. The random uniform sampling strategy, however, yields unsatisfactory signal reconstruction performance empirically, in comparison to heuristic sampling approaches. In this thesis, we provide rigorous solutions to the three examples above and other related problems. For the first two problems above, our key idea is to instead consider weaker localized versions of the smoothness condition. For the third, our solution is to propose a new theoretical framework for compressive MRI: We pose compressive MRI as a statistical learning problem, and solve it by empirical risk minimization. Interestingly, the RIP is not required in this framework

    Risk-aware linear bandits with convex loss

    Full text link
    In decision-making problems such as the multi-armed bandit, an agent learns sequentially by optimizing a certain feedback. While the mean reward criterion has been extensively studied, other measures that reflect an aversion to adverse outcomes, such as mean-variance or conditional value-at-risk (CVaR), can be of interest for critical applications (healthcare, agriculture). Algorithms have been proposed for such risk-aware measures under bandit feedback without contextual information. In this work, we study contextual bandits where such risk measures can be elicited as linear functions of the contexts through the minimization of a convex loss. A typical example that fits within this framework is the expectile measure, which is obtained as the solution of an asymmetric least-square problem. Using the method of mixtures for supermartingales, we derive confidence sequences for the estimation of such risk measures. We then propose an optimistic UCB algorithm to learn optimal risk-aware actions, with regret guarantees similar to those of generalized linear bandits. This approach requires solving a convex problem at each round of the algorithm, which we can relax by allowing only approximated solution obtained by online gradient descent, at the cost of slightly higher regret. We conclude by evaluating the resulting algorithms on numerical experiments
    corecore