157 research outputs found

    Improved bounds for the number of forests and acyclic orientations in the square lattice

    Get PDF
    In a recent paper Merino and Welsh (1999) studied several counting problems on the square lattice LnL_n. The authors gave the following bounds for the asymptotics of f(n)f(n), the number of forests of LnL_n, and α(n)\alpha(n), the number of acyclic orientations of LnL_n: 3.209912limnf(n)1/n23.841613.209912 \leq \lim_{n\rightarrow\infty} f(n)^{1/n^2} \leq 3.84161 and 22/7limnα(n)3.7092522/7 \leq \lim_{n\rightarrow\infty} \alpha(n) \leq 3.70925. In this paper we improve these bounds as follows: 3.64497limnf(n)1/n23.741013.64497 \leq \lim_{n\rightarrow\infty} f(n)^{1/n^2} \leq 3.74101 and 3.41358limnα(n)3.554493.41358 \leq \lim_{n\rightarrow\infty} \alpha(n) \leq 3.55449. We obtain this by developing a method for computing the Tutte polynomial of the square lattice and other related graphs based on transfer matrices

    Computing the Tutte polynomial of Archimedean tilings

    Get PDF
    We describe an algorithm to compute the Tutte polynomial of large fragments of Archimedean tilings by squares, triangles, hexagons and combinations thereof. Our algorithm improves a well known method for computing the Tutte polynomial of square lattices. We also address the problem of obtaining Tutte polynomial evaluations from the symbolic expressions generated by our algorithm, improving the best known lower bound for the asymptotics of the number of spanning forests, and the lower and upper bounds for the asymptotics of the number of acyclic orientations of the square lattice

    Detecting and counting small subgraphs, and evaluating a parameterized Tutte polynomial: lower bounds via toroidal grids and Cayley graph expanders

    Get PDF
    Given a graph property Φ\Phi, we consider the problem EdgeSub(Φ)\mathtt{EdgeSub}(\Phi), where the input is a pair of a graph GG and a positive integer kk, and the task is to decide whether GG contains a kk-edge subgraph that satisfies Φ\Phi. Specifically, we study the parameterized complexity of EdgeSub(Φ)\mathtt{EdgeSub}(\Phi) and of its counting problem #EdgeSub(Φ)\#\mathtt{EdgeSub}(\Phi) with respect to both approximate and exact counting. We obtain a complete picture for minor-closed properties Φ\Phi: the decision problem EdgeSub(Φ)\mathtt{EdgeSub}(\Phi) always admits an FPT algorithm and the counting problem #EdgeSub(Φ)\#\mathtt{EdgeSub}(\Phi) always admits an FPTRAS. For exact counting, we present an exhaustive and explicit criterion on the property Φ\Phi which, if satisfied, yields fixed-parameter tractability and otherwise #W[1]\#\mathsf{W[1]}-hardness. Additionally, most of our hardness results come with an almost tight conditional lower bound under the so-called Exponential Time Hypothesis, ruling out algorithms for #EdgeSub(Φ)\#\mathtt{EdgeSub}(\Phi) that run in time f(k)Go(k/logk)f(k)\cdot|G|^{o(k/\log k)} for any computable function ff. As a main technical result, we gain a complete understanding of the coefficients of toroidal grids and selected Cayley graph expanders in the homomorphism basis of #EdgeSub(Φ)\#\mathtt{EdgeSub}(\Phi). This allows us to establish hardness of exact counting using the Complexity Monotonicity framework due to Curticapean, Dell and Marx (STOC'17). Our methods can also be applied to a parameterized variant of the Tutte Polynomial TGkT^k_G of a graph GG, to which many known combinatorial interpretations of values of the (classical) Tutte Polynomial can be extended. As an example, TGk(2,1)T^k_G(2,1) corresponds to the number of kk-forests in the graph GG. Our techniques allow us to completely understand the parametrized complexity of computing the evaluation of TGkT^k_G at every pair of rational coordinates (x,y)(x,y)

    Renormalization: an advanced overview

    Full text link
    We present several approaches to renormalization in QFT: the multi-scale analysis in perturbative renormalization, the functional methods \`a la Wetterich equation, and the loop-vertex expansion in non-perturbative renormalization. While each of these is quite well-established, they go beyond standard QFT textbook material, and may be little-known to specialists of each other approach. This review is aimed at bridging this gap.Comment: Review, 130 pages, 33 figures; v2: misprints corrected, refs. added, minor improvements; v3: some changes to sect. 5, refs. adde
    corecore