201 research outputs found

    Eppstein's bound on intersecting triangles revisited

    Get PDF
    Let S be a set of n points in the plane, and let T be a set of m triangles with vertices in S. Then there exists a point in the plane contained in Omega(m^3 / (n^6 log^2 n)) triangles of T. Eppstein (1993) gave a proof of this claim, but there is a problem with his proof. Here we provide a correct proof by slightly modifying Eppstein's argument.Comment: Minor revision following referee's suggestions. To appear in Journal of Combinatorial Theory, Series A. 5 pages, 1 figur

    On the Complexity of the k-Level in Arrangements of Pseudoplanes

    Get PDF
    A classical open problem in combinatorial geometry is to obtain tight asymptotic bounds on the maximum number of k-level vertices in an arrangement of n hyperplanes in d dimensions (vertices with exactly k of the hyperplanes passing below them). This is a dual version of the k-set problem, which, in a primal setting, seeks bounds for the maximum number of k-sets determined by n points in d dimensions, where a k-set is a subset of size k that can be separated from its complement by a hyperplane. The k-set problem is still wide open even in the plane, with a substantial gap between the best known upper and lower bounds. The gap gets larger as the dimension grows. In three dimensions, the best known upper bound is O(nk^(3/2)). In its dual version, the problem can be generalized by replacing hyperplanes by other families of surfaces (or curves in the planes). Reasonably sharp bounds have been obtained for curves in the plane, but the known upper bounds are rather weak for more general surfaces, already in three dimensions, except for the case of triangles. The best known general bound, due to Chan is O(n^2.997), for families of surfaces that satisfy certain (fairly weak) properties. In this paper we consider the case of pseudoplanes in 3 dimensions (defined in detail in the introduction), and establish the upper bound O(nk^(5/3)) for the number of k-level vertices in an arrangement of n pseudoplanes. The bound is obtained by establishing suitable (and nontrivial) extensions of dual versions of classical tools that have been used in studying the primal k-set problem, such as the Lova'sz Lemma and the Crossing Lemma.Comment: 23 pages, 13 figure

    Selection Lemmas for various geometric objects

    Full text link
    Selection lemmas are classical results in discrete geometry that have been well studied and have applications in many geometric problems like weak epsilon nets and slimming Delaunay triangulations. Selection lemma type results typically show that there exists a point that is contained in many objects that are induced (spanned) by an underlying point set. In the first selection lemma, we consider the set of all the objects induced (spanned) by a point set PP. This question has been widely explored for simplices in Rd\mathbb{R}^d, with tight bounds in R2\mathbb{R}^2. In our paper, we prove first selection lemma for other classes of geometric objects. We also consider the strong variant of this problem where we add the constraint that the piercing point comes from PP. We prove an exact result on the strong and the weak variant of the first selection lemma for axis-parallel rectangles, special subclasses of axis-parallel rectangles like quadrants and slabs, disks (for centrally symmetric point sets). We also show non-trivial bounds on the first selection lemma for axis-parallel boxes and hyperspheres in Rd\mathbb{R}^d. In the second selection lemma, we consider an arbitrary mm sized subset of the set of all objects induced by PP. We study this problem for axis-parallel rectangles and show that there exists an point in the plane that is contained in m324n4\frac{m^3}{24n^4} rectangles. This is an improvement over the previous bound by Smorodinsky and Sharir when mm is almost quadratic

    Optimal bounds for the colored Tverberg problem

    Full text link
    We prove a "Tverberg type" multiple intersection theorem. It strengthens the prime case of the original Tverberg theorem from 1966, as well as the topological Tverberg theorem of Barany et al. (1980), by adding color constraints. It also provides an improved bound for the (topological) colored Tverberg problem of Barany & Larman (1992) that is tight in the prime case and asymptotically optimal in the general case. The proof is based on relative equivariant obstruction theory.Comment: 17 pages, 3 figures; revised version (February 2013), to appear in J. European Math. Soc. (JEMS

    Geometric Dilation and Halving Distance

    Get PDF
    Let us consider the network of streets of a city represented by a geometric graph G in the plane. The vertices of G represent the crossroads and the edges represent the streets. The latter do not have to be straight line segments, they may be curved. If one wants to drive from a place p to some other place q, normally the length of the shortest path along streets, d_G(p,q), is bigger than the airline distance (Euclidean distance) |pq|. The (relative) DETOUR is defined as delta_G(p,q) := d_G(p,q)/|pq|. The supremum of all these ratios is called the GEOMETRIC DILATION of G. It measures the quality of the network. A small dilation value guarantees that there is no bigger detour between any two points. Given a finite point set S, we would like to know the smallest possible dilation of any graph that contains the given points on its edges. We call this infimum the DILATION of S and denote it by delta(S). The main results of this thesis are - a general upper bound to the dilation of any finite point set S, delta(S) - a lower bound for a specific set P, delta(P)>(1+10^(-11))pi/2, which approximately equals 1.571 In order to achieve these results, we first consider closed curves. Their dilation depends on the HALVING PAIRS, pairs of points which divide the closed curve in two parts of equal length. In particular the distance between the two points is essential, the HALVING DISTANCE. A transformation technique based on halving pairs, the HALVING PAIR TRANSFORMATION, and the curve formed by the midpoints of the halving pairs, the MIDPOINT CURVE, help us to derive lower bounds to dilation. For constructing graphs of small dilation, we use ZINDLER CURVES. These are closed curves of constant halving distance. To give a structured overview, the mathematical apparatus for deriving the main results of this thesis includes - upper bound: * the construction of certain Zindler curves to generate a periodic graph of small dilation * an embedding argument based on a number theoretical result by Dirichlet - lower bound: * the formulation and analysis of the halving pair transformation * a stability result for the dilation of closed curves based on this transformation and the midpoint curve * the application of a disk-packing result In addition, this thesis contains - a detailed analysis of the dilation of closed curves - a collection of inequalities, which relate halving distance to other important quantities from convex geometry, and their proofs; including four new inequalities - the rediscovery of Zindler curves and a compact presentation of their properties - a proof of the applied disk packing result.Geometrische Dilation und Halbierungsabstand Man kann das von den Straßen einer Stadt gebildete Netzwerk durch einen geometrischen Graphen in der Ebene darstellen. Die Knoten dieses Graphen repräsentieren die Kreuzungen und die Kanten sind die Straßen. Letztere müssen nicht geradlinig sein, sondern können beliebig gekrümmt sein. Wenn man nun von einem Ort p zu einem anderen Ort q fahren möchte, dann ist normalerweise die Länge des kürzesten Pfades über Straßen, d_G(p,q), länger als der Luftlinienabstand (euklidischer Abstand) |pq|. Der (relative) UMWEG (DETOUR) ist definiert als delta_G(p,q) := d_G(p,q)/|pq|. Das Supremum all dieser Brüche wird GEOMETRISCHE DILATION (GEOMETRIC DILATION) von G genannt. Es ist ein Maß für die Qualität des Straßennetzes. Ein kleiner Dilationswert garantiert, dass es keinen größeren Umweg zwischen beliebigen zwei Punkten gibt. Für eine gegebene endliche Punktmenge S würden wir nun gerne bestimmen, was der kleinste Dilationswert ist, den wir mit einem Graphen erreichen können, der die gegebenen Punkte auf seinen Kanten enthält. Dieses Infimum nennen wir die DILATION von S und schreiben kurz delta(S). Die Haupt-Ergebnisse dieser Arbeit sind - eine allgemeine obere Schranke für die Dilation jeder beliebigen endlichen Punktmenge S: delta(S) - eine untere Schranke für eine bestimmte Menge P: delta(P)>(1+10^(-11))pi/2, was ungefähr der Zahl 1.571 entspricht Um diese Ergebnisse zu erreichen, betrachten wir zunächst geschlossene Kurven. Ihre Dilation hängt von sogenannten HALBIERUNGSPAAREN (HALVING PAIRS) ab. Das sind Punktpaare, die die geschlossene Kurve in zwei Teile gleicher Länge teilen. Besonders der Abstand der beiden Punkte ist von Bedeutung, der HALBIERUNGSABSTAND (HALVING DISTANCE). Eine auf den Halbierungspaaren aufbauende Transformation, die HALBIERUNGSPAARTRANSFORMATION (HALVING PAIR TRANSFORMATION), und die von den Mittelpunkten der Halbierungspaare gebildete Kurve, die MITTELPUNKTKURVE (MIDPOINT CURVE), helfen uns untere Dilationsschranken herzuleiten. Zur Konstruktion von Graphen mit kleiner Dilation benutzen wir ZINDLERKURVEN (ZINDLER CURVES). Dies sind geschlossene Kurven mit konstantem Halbierungspaarabstand. Die mathematischen Hilfsmittel, mit deren Hilfe wir schließlich die Hauptresultate beweisen, sind unter anderem - obere Schranke: * die Konstruktion von bestimmten Zindlerkurven, mit denen periodische Graphen kleiner Dilation gebildet werden können * ein Einbettungsargument, das einen zahlentheoretischen Satz von Dirichlet benutzt - untere Schranke: * die Definition und Analyse der Halbierungspaartransformation * ein Stabilitätsresultat für die Dilation geschlossener Kurven, das auf dieser Transformation und der Mittelpunktkurve basiert * die Anwendung eines Kreispackungssatzes Zusätzlich enthält diese Dissertation - eine detaillierte Analyse der Dilation geschlossener Kurven - eine Sammlung von Ungleichungen, die den Halbierungsabstand zu anderen wichtigen Größen der Konvexgeometrie in Beziehung setzen, und ihre Beweise; inklusive vier neuer Ungleichungen - die Wiederentdeckung von Zindlerkurven und eine kompakte Darstellung ihrer Eigenschaften - einen Beweis des angewendeten Kreispackungssatzes
    corecore