769 research outputs found

    Hybrid Arabic–French machine translation using syntactic re-ordering and morphological pre-processing

    Get PDF
    This is an accepted manuscript of an article published by Elsevier BV in Computer Speech & Language on 08/11/2014, available online: https://doi.org/10.1016/j.csl.2014.10.007 The accepted version of the publication may differ from the final published version.Arabic is a highly inflected language and a morpho-syntactically complex language with many differences compared to several languages that are heavily studied. It may thus require good pre-processing as it presents significant challenges for Natural Language Processing (NLP), specifically for Machine Translation (MT). This paper aims to examine how Statistical Machine Translation (SMT) can be improved using rule-based pre-processing and language analysis. We describe a hybrid translation approach coupling an Arabic–French statistical machine translation system using the Moses decoder with additional morphological rules that reduce the morphology of the source language (Arabic) to a level that makes it closer to that of the target language (French). Moreover, we introduce additional swapping rules for a structural matching between the source language and the target language. Two structural changes involving the positions of the pronouns and verbs in both the source and target languages have been attempted. The results show an improvement in the quality of translation and a gain in terms of BLEU score after introducing a pre-processing scheme for Arabic and applying these rules based on morphological variations and verb re-ordering (VS into SV constructions) in the source language (Arabic) according to their positions in the target language (French). Furthermore, a learning curve shows the improvement in terms on BLEU score under scarce- and large-resources conditions. The proposed approach is completed without increasing the amount of training data or radically changing the algorithms that can affect the translation or training engines.This paper is based upon work supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant number 356097-08.Published versio

    Coupling hierarchical word reordering and decoding in phrase-based statistical machine translation

    Get PDF
    In this paper, we start with the existing idea of taking reordering rules automatically derived from syntactic representations, and applying them in a preprocessing step before translation to make the source sentence structurally more like the target; and we propose a new approach to hierarchically extracting these rules. We evaluate this, combined with a lattice-based decoding, and show improvements over stateof-the-art distortion models.Postprint (published version

    A Stochastic Decoder for Neural Machine Translation

    Get PDF
    The process of translation is ambiguous, in that there are typically many valid trans- lations for a given sentence. This gives rise to significant variation in parallel cor- pora, however, most current models of machine translation do not account for this variation, instead treating the prob- lem as a deterministic process. To this end, we present a deep generative model of machine translation which incorporates a chain of latent variables, in order to ac- count for local lexical and syntactic varia- tion in parallel corpora. We provide an in- depth analysis of the pitfalls encountered in variational inference for training deep generative models. Experiments on sev- eral different language pairs demonstrate that the model consistently improves over strong baselines.Comment: Accepted at ACL 201

    Natural language processing for similar languages, varieties, and dialects: A survey

    Get PDF
    There has been a lot of recent interest in the natural language processing (NLP) community in the computational processing of language varieties and dialects, with the aim to improve the performance of applications such as machine translation, speech recognition, and dialogue systems. Here, we attempt to survey this growing field of research, with focus on computational methods for processing similar languages, varieties, and dialects. In particular, we discuss the most important challenges when dealing with diatopic language variation, and we present some of the available datasets, the process of data collection, and the most common data collection strategies used to compile datasets for similar languages, varieties, and dialects. We further present a number of studies on computational methods developed and/or adapted for preprocessing, normalization, part-of-speech tagging, and parsing similar languages, language varieties, and dialects. Finally, we discuss relevant applications such as language and dialect identification and machine translation for closely related languages, language varieties, and dialects.Non peer reviewe
    • …
    corecore