1,338 research outputs found

    Improved Approximation for the Directed Spanner Problem

    Full text link
    We prove that the size of the sparsest directed k-spanner of a graph can be approximated in polynomial time to within a factor of O~(n)\tilde{O}(\sqrt{n}), for all k >= 3. This improves the O~(n2/3)\tilde{O}(n^{2/3})-approximation recently shown by Dinitz and Krauthgamer

    Fault-Tolerant Spanners: Better and Simpler

    Full text link
    A natural requirement of many distributed structures is fault-tolerance: after some failures, whatever remains from the structure should still be effective for whatever remains from the network. In this paper we examine spanners of general graphs that are tolerant to vertex failures, and significantly improve their dependence on the number of faults rr, for all stretch bounds. For stretch k3k \geq 3 we design a simple transformation that converts every kk-spanner construction with at most f(n)f(n) edges into an rr-fault-tolerant kk-spanner construction with at most O(r3logn)f(2n/r)O(r^3 \log n) \cdot f(2n/r) edges. Applying this to standard greedy spanner constructions gives rr-fault tolerant kk-spanners with O~(r2n1+2k+1)\tilde O(r^{2} n^{1+\frac{2}{k+1}}) edges. The previous construction by Chechik, Langberg, Peleg, and Roddity [STOC 2009] depends similarly on nn but exponentially on rr (approximately like krk^r). For the case k=2k=2 and unit-length edges, an O(rlogn)O(r \log n)-approximation algorithm is known from recent work of Dinitz and Krauthgamer [arXiv 2010], where several spanner results are obtained using a common approach of rounding a natural flow-based linear programming relaxation. Here we use a different (stronger) LP relaxation and improve the approximation ratio to O(logn)O(\log n), which is, notably, independent of the number of faults rr. We further strengthen this bound in terms of the maximum degree by using the \Lovasz Local Lemma. Finally, we show that most of our constructions are inherently local by designing equivalent distributed algorithms in the LOCAL model of distributed computation.Comment: 17 page

    An FPT Algorithm for Minimum Additive Spanner Problem

    Get PDF
    For a positive integer t and a graph G, an additive t-spanner of G is a spanning subgraph in which the distance between every pair of vertices is at most the original distance plus t. The Minimum Additive t-Spanner Problem is to find an additive t-spanner with the minimum number of edges in a given graph, which is known to be NP-hard. Since we need to care about global properties of graphs when we deal with additive t-spanners, the Minimum Additive t-Spanner Problem is hard to handle and hence only few results are known for it. In this paper, we study the Minimum Additive t-Spanner Problem from the viewpoint of parameterized complexity. We formulate a parameterized version of the problem in which the number of removed edges is regarded as a parameter, and give a fixed-parameter algorithm for it. We also extend our result to the case with both a multiplicative approximation factor ? and an additive approximation parameter ?, which we call (?, ?)-spanners

    A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection

    Full text link
    Given an undirected graph with edge costs and node weights, the minimum bisection problem asks for a partition of the nodes into two parts of equal weight such that the sum of edge costs between the parts is minimized. We give a polynomial time bicriteria approximation scheme for bisection on planar graphs. Specifically, let WW be the total weight of all nodes in a planar graph GG. For any constant ε>0\varepsilon > 0, our algorithm outputs a bipartition of the nodes such that each part weighs at most W/2+εW/2 + \varepsilon and the total cost of edges crossing the partition is at most (1+ε)(1+\varepsilon) times the total cost of the optimal bisection. The previously best known approximation for planar minimum bisection, even with unit node weights, was O(logn)O(\log n). Our algorithm actually solves a more general problem where the input may include a target weight for the smaller side of the bipartition.Comment: To appear in STOC 201
    corecore