3,140 research outputs found

    Augmenting graphs to minimize the diameter

    Full text link
    We study the problem of augmenting a weighted graph by inserting edges of bounded total cost while minimizing the diameter of the augmented graph. Our main result is an FPT 4-approximation algorithm for the problem.Comment: 15 pages, 3 figure

    Approximation algorithms for node-weighted prize-collecting Steiner tree problems on planar graphs

    Get PDF
    We study the prize-collecting version of the Node-weighted Steiner Tree problem (NWPCST) restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm for planar NWPCST. We then show a (2.88+ϵ2.88 + \epsilon)-approximation which establishes a new best approximation guarantee for planar NWPCST. This is done by combining our LMP algorithm with a threshold rounding technique and utilizing the 2.4-approximation of Berman and Yaroslavtsev for the version without penalties. We also give a primal-dual 4-approximation algorithm for the more general forest version using techniques introduced by Hajiaghay and Jain

    The Traveling Salesman Problem Under Squared Euclidean Distances

    Get PDF
    Let PP be a set of points in Rd\mathbb{R}^d, and let α1\alpha \ge 1 be a real number. We define the distance between two points p,qPp,q\in P as pqα|pq|^{\alpha}, where pq|pq| denotes the standard Euclidean distance between pp and qq. We denote the traveling salesman problem under this distance function by TSP(d,αd,\alpha). We design a 5-approximation algorithm for TSP(2,2) and generalize this result to obtain an approximation factor of 3α1+6α/33^{\alpha-1}+\sqrt{6}^{\alpha}/3 for d=2d=2 and all α2\alpha\ge2. We also study the variant Rev-TSP of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-TSP(2,α)(2,\alpha) with α2\alpha\ge2, and we show that Rev-TSP(d,α)(d, \alpha) is APX-hard if d3d\ge3 and α>1\alpha>1. The APX-hardness proof carries over to TSP(d,α)(d, \alpha) for the same parameter ranges.Comment: 12 pages, 4 figures. (v2) Minor linguistic change

    Approximating k-Forest with Resource Augmentation: A Primal-Dual Approach

    Full text link
    In this paper, we study the kk-forest problem in the model of resource augmentation. In the kk-forest problem, given an edge-weighted graph G(V,E)G(V,E), a parameter kk, and a set of mm demand pairs V×V\subseteq V \times V, the objective is to construct a minimum-cost subgraph that connects at least kk demands. The problem is hard to approximate---the best-known approximation ratio is O(min{n,k})O(\min\{\sqrt{n}, \sqrt{k}\}). Furthermore, kk-forest is as hard to approximate as the notoriously-hard densest kk-subgraph problem. While the kk-forest problem is hard to approximate in the worst-case, we show that with the use of resource augmentation, we can efficiently approximate it up to a constant factor. First, we restate the problem in terms of the number of demands that are {\em not} connected. In particular, the objective of the kk-forest problem can be viewed as to remove at most mkm-k demands and find a minimum-cost subgraph that connects the remaining demands. We use this perspective of the problem to explain the performance of our algorithm (in terms of the augmentation) in a more intuitive way. Specifically, we present a polynomial-time algorithm for the kk-forest problem that, for every ϵ>0\epsilon>0, removes at most mkm-k demands and has cost no more than O(1/ϵ2)O(1/\epsilon^{2}) times the cost of an optimal algorithm that removes at most (1ϵ)(mk)(1-\epsilon)(m-k) demands

    Fast Distributed Approximation for TAP and 2-Edge-Connectivity

    Get PDF
    The tree augmentation problem (TAP) is a fundamental network design problem, in which the input is a graph GG and a spanning tree TT for it, and the goal is to augment TT with a minimum set of edges AugAug from GG, such that TAugT \cup Aug is 2-edge-connected. TAP has been widely studied in the sequential setting. The best known approximation ratio of 2 for the weighted case dates back to the work of Frederickson and J\'{a}J\'{a}, SICOMP 1981. Recently, a 3/2-approximation was given for unweighted TAP by Kortsarz and Nutov, TALG 2016. Recent breakthroughs give an approximation of 1.458 for unweighted TAP [Grandoni et al., STOC 2018], and approximations better than 2 for bounded weights [Adjiashvili, SODA 2017; Fiorini et al., SODA 2018]. In this paper, we provide the first fast distributed approximations for TAP. We present a distributed 22-approximation for weighted TAP which completes in O(h)O(h) rounds, where hh is the height of TT. When hh is large, we show a much faster 4-approximation algorithm for the unweighted case, completing in O(D+nlogn)O(D+\sqrt{n}\log^*{n}) rounds, where nn is the number of vertices and DD is the diameter of GG. Immediate consequences of our results are an O(D)O(D)-round 2-approximation algorithm for the minimum size 2-edge-connected spanning subgraph, which significantly improves upon the running time of previous approximation algorithms, and an O(hMST+nlogn)O(h_{MST}+\sqrt{n}\log^{*}{n})-round 3-approximation algorithm for the weighted case, where hMSTh_{MST} is the height of the MST of the graph. Additional applications are algorithms for verifying 2-edge-connectivity and for augmenting the connectivity of any connected spanning subgraph to 2. Finally, we complement our study with proving lower bounds for distributed approximations of TAP

    How to Secure Matchings Against Edge Failures

    Get PDF
    Suppose we are given a bipartite graph that admits a perfect matching and an adversary may delete any edge from the graph with the intention of destroying all perfect matchings. We consider the task of adding a minimum cost edge-set to the graph, such that the adversary never wins. We show that this problem is equivalent to covering a digraph with non-trivial strongly connected components at minimal cost. We provide efficient exact and approximation algorithms for this task. In particular, for the unit-cost problem, we give a log_2 n-factor approximation algorithm and a polynomial-time algorithm for chordal-bipartite graphs. Furthermore, we give a fixed parameter algorithm for the problem parameterized by the treewidth of the input graph. For general non-negative weights we give tight upper and lower approximation bounds relative to the Directed Steiner Forest problem. Additionally we prove a dichotomy theorem characterizing minor-closed graph classes which allow for a polynomial-time algorithm. To obtain our results, we exploit a close relation to the classical Strong Connectivity Augmentation problem as well as directed Steiner problems
    corecore