451 research outputs found

    Approximating Disjoint-Path Problems Using Greedy Algorithms and Packing Integer Programs

    Get PDF
    In the edge(vertex)-disjoint path problem we are given a graph GG and a set T{\cal T} of connection requests. Every connection request in T{\cal T} is a vertex pair (si,ti),(s_i,t_i), 1iK.1 \leq i \leq K. The objective is to connect a maximum number of the pairs via edge(vertex)-disjoint paths. The edge-disjoint path problem can be generalized to the multiple-source unsplittable flow problem where connection request ii has a demand ρi\rho_i and every edge ee a capacity ue.u_e. All these problems are NP-hard and have a multitude of applications in areas such as routing, scheduling and bin packing. Given the hardness of the problem, we study polynomial-time approximation algorithms. In this context, a ρ\rho-approximation algorithm is able to route at least a 1/ρ1/\rho fraction of the connection requests. Although the edge- and vertex-disjoint path problems, and more recently the unsplittable flow generalization, have been extensively studied, they remain notoriously hard to approximate with a bounded performance guarantee. For example, even for the simple edge-disjoint path problem, no o(E)o(\sqrt{|E|})-approximation algorithm is known. Moreover some of the best existing approximation ratios are obtained through sophisticated and non-standard randomized rounding schemes. In this paper we introduce techniques which yield algorithms for a wide range of disjoint-path and unsplittable flow problems. For the general unsplittable flow problem, even with weights on the commodities, our techniques lead to the first approximation algorithm and obtain an approximation ratio that matches, to within logarithmic factors, the O(E)O(\sqrt{|E|}) approximation ratio for the simple edge-disjoint path problem. In addition to this result and to improved bounds for several disjoint-path problems, our techniques simplify and unify the derivation of many existing approximation results. We use two basic techniques. First, we propose simple greedy algorithms for edge- and vertex-disjoint paths and second, we propose the use of a framework based on packing integer programs for more general problems such as unsplittable flow. A packing integer program is of the form maximize cTx,c^{T}\cdot x, subject to Axb,Ax \leq b, A,b,c0.A,b,c \geq 0. As part of our tools we develop improved approximation algorithms for a class of packing integer programs, a result that we believe is of independent interest

    A mazing 2+ε approximation for unsplittable flow on a path

    Get PDF
    We study the problem of unsplittable flow on a path (UFP), which arises naturally in many applications such as bandwidth allocation, job scheduling, and caching. Here we are given a path with nonnegative edge capacities and a set of tasks, which are characterized by a subpath, a demand, and a profit. The goal is to find the most profitable subset of tasks whose total demand does not violate the edge capacities. Not surprisingly, this problem has received a lot of attention in the research community. If the demand of each task is at most a small-enough fraction δ of the capacity along its subpath (δ-small tasks), then it has been known for a long time [Chekuri et al., ICALP 2003] how to compute a solution of value arbitrarily close to the optimum via LP rounding. However, much remains unknown for the complementary case, that is, when the demand of each task is at least some fraction δ > 0 of the smallest capacity of its subpath (δ-large tasks). For this setting, a constant factor approximation is known, improving on an earlier logarithmic approximation [Bonsma et al., FOCS 2011]. In this article, we present a polynomial-time approximation scheme (PTAS) for δ-large tasks, for any constant δ > 0. Key to this result is a complex geometrically inspired dynamic program. Each task is represented as a segment underneath the capacity curve, and we identify a proper maze-like structure so that each corridor of the maze is crossed by only O(1) tasks in the optimal solution. The maze has a tree topology, which guides our dynamic program. Our result implies a 2 + ε approximation for UFP, for any constant ε > 0, improving on the previously best 7 + ε approximation by Bonsma et al. We remark that our improved approximation algorithm matches the best known approximation ratio for the considerably easier special case of uniform edge capacities

    Algorithms to Approximate Column-Sparse Packing Problems

    Full text link
    Column-sparse packing problems arise in several contexts in both deterministic and stochastic discrete optimization. We present two unifying ideas, (non-uniform) attenuation and multiple-chance algorithms, to obtain improved approximation algorithms for some well-known families of such problems. As three main examples, we attain the integrality gap, up to lower-order terms, for known LP relaxations for k-column sparse packing integer programs (Bansal et al., Theory of Computing, 2012) and stochastic k-set packing (Bansal et al., Algorithmica, 2012), and go "half the remaining distance" to optimal for a major integrality-gap conjecture of Furedi, Kahn and Seymour on hypergraph matching (Combinatorica, 1993).Comment: Extended abstract appeared in SODA 2018. Full version in ACM Transactions of Algorithm

    Closing the Gap for Pseudo-Polynomial Strip Packing

    Get PDF
    Two-dimensional packing problems are a fundamental class of optimization problems and Strip Packing is one of the most natural and famous among them. Indeed it can be defined in just one sentence: Given a set of rectangular axis parallel items and a strip with bounded width and infinite height, the objective is to find a packing of the items into the strip minimizing the packing height. We speak of pseudo-polynomial Strip Packing if we consider algorithms with pseudo-polynomial running time with respect to the width of the strip. It is known that there is no pseudo-polynomial time algorithm for Strip Packing with a ratio better than 5/4 unless P = NP. The best algorithm so far has a ratio of 4/3 + epsilon. In this paper, we close the gap between inapproximability result and currently known algorithms by presenting an algorithm with approximation ratio 5/4 + epsilon. The algorithm relies on a new structural result which is the main accomplishment of this paper. It states that each optimal solution can be transformed with bounded loss in the objective such that it has one of a polynomial number of different forms thus making the problem tractable by standard techniques, i.e., dynamic programming. To show the conceptual strength of the approach, we extend our result to other problems as well, e.g., Strip Packing with 90 degree rotations and Contiguous Moldable Task Scheduling, and present algorithms with approximation ratio 5/4 + epsilon for these problems as well

    Packing Cars into Narrow Roads: PTASs for Limited Supply Highway

    Get PDF
    In the Highway problem, we are given a path with n edges (the highway), and a set of m drivers, each one characterized by a subpath and a budget. For a given assignment of edge prices (the tolls), the highway owner collects from each driver the total price of the associated path when it does not exceed drivers\u27s budget, and zero otherwise. The goal is to choose the prices to maximize the total profit. A PTAS is known for this (strongly NP-hard) problem [Grandoni,Rothvoss-SODA\u2711, SICOMP\u2716]. In this paper we study the limited supply generalization of Highway, that incorporates capacity constraints. Here the input also includes a capacity u_e >= 0 for each edge e; we need to select, among drivers that can afford the required price, a subset such that the number of drivers that use each edge e is at most u_e (and we get profit only from selected drivers). To the best of our knowledge, the only approximation algorithm known for this problem is a folklore O(log m) approximation based on a reduction to the related Unsplittable Flow on a Path problem (UFP). The main result of this paper is a PTAS for limited supply highway. As a second contribution, we study a natural generalization of the problem where each driver i demands a different amount d_i of capacity. Using known techniques, it is not hard to derive a QPTAS for this problem. Here we present a PTAS for the case that drivers have uniform budgets. Finding a PTAS for non-uniform-demand limited supply highway is left as a challenging open problem

    A Constant Factor Approximation Algorithm for Unsplittable Flow on Paths

    Get PDF
    In the unsplittable flow problem on a path, we are given a capacitated path PP and nn tasks, each task having a demand, a profit, and start and end vertices. The goal is to compute a maximum profit set of tasks, such that for each edge ee of PP, the total demand of selected tasks that use ee does not exceed the capacity of ee. This is a well-studied problem that has been studied under alternative names, such as resource allocation, bandwidth allocation, resource constrained scheduling, temporal knapsack and interval packing. We present a polynomial time constant-factor approximation algorithm for this problem. This improves on the previous best known approximation ratio of O(logn)O(\log n). The approximation ratio of our algorithm is 7+ϵ7+\epsilon for any ϵ>0\epsilon>0. We introduce several novel algorithmic techniques, which might be of independent interest: a framework which reduces the problem to instances with a bounded range of capacities, and a new geometrically inspired dynamic program which solves a special case of the maximum weight independent set of rectangles problem to optimality. In the setting of resource augmentation, wherein the capacities can be slightly violated, we give a (2+ϵ)(2+\epsilon)-approximation algorithm. In addition, we show that the problem is strongly NP-hard even if all edge capacities are equal and all demands are either~1,~2, or~3.Comment: 37 pages, 5 figures Version 2 contains the same results as version 1, but the presentation has been greatly revised and improved. References have been adde
    corecore