13,945 research outputs found

    Improved Approximation Algorithms for Projection Games

    Get PDF
    The projection games (aka Label-Cover) problem is of great importance to the field of approximation algorithms, since most of the NP-hardness of approximation results we know today are reductions from Label-Cover. In this paper we design several approximation algorithms for projection games: 1. A polynomial-time approximation algorithm that improves on the previous best approximation by Charikar, Hajiaghayi and Karloff [7]. 2. A sub-exponential time algorithm with much tighter approximation for the case of smooth projection games. 3. A PTAS for planar graphs.National Science Foundation (U.S.) (Grant 1218547

    A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

    Get PDF
    A (k×l)(k \times l)-birthday repetition Gk×l\mathcal{G}^{k \times l} of a two-prover game G\mathcal{G} is a game in which the two provers are sent random sets of questions from G\mathcal{G} of sizes kk and ll respectively. These two sets are sampled independently uniformly among all sets of questions of those particular sizes. We prove the following birthday repetition theorem: when G\mathcal{G} satisfies some mild conditions, val(Gk×l)val(\mathcal{G}^{k \times l}) decreases exponentially in Ω(kl/n)\Omega(kl/n) where nn is the total number of questions. Our result positively resolves an open question posted by Aaronson, Impagliazzo and Moshkovitz (CCC 2014). As an application of our birthday repetition theorem, we obtain new fine-grained hardness of approximation results for dense CSPs. Specifically, we establish a tight trade-off between running time and approximation ratio for dense CSPs by showing conditional lower bounds, integrality gaps and approximation algorithms. In particular, for any sufficiently large ii and for every k≥2k \geq 2, we show the following results: - We exhibit an O(q1/i)O(q^{1/i})-approximation algorithm for dense Max kk-CSPs with alphabet size qq via Ok(i)O_k(i)-level of Sherali-Adams relaxation. - Through our birthday repetition theorem, we obtain an integrality gap of q1/iq^{1/i} for Ω~k(i)\tilde\Omega_k(i)-level Lasserre relaxation for fully-dense Max kk-CSP. - Assuming that there is a constant ϵ>0\epsilon > 0 such that Max 3SAT cannot be approximated to within (1−ϵ)(1-\epsilon) of the optimal in sub-exponential time, our birthday repetition theorem implies that any algorithm that approximates fully-dense Max kk-CSP to within a q1/iq^{1/i} factor takes (nq)Ω~k(i)(nq)^{\tilde \Omega_k(i)} time, almost tightly matching the algorithmic result based on Sherali-Adams relaxation.Comment: 45 page

    Approximating Dense Max 2-CSPs

    Get PDF
    In this paper, we present a polynomial-time algorithm that approximates sufficiently high-value Max 2-CSPs on sufficiently dense graphs to within O(Nε)O(N^{\varepsilon}) approximation ratio for any constant ε>0\varepsilon > 0. Using this algorithm, we also achieve similar results for free games, projection games on sufficiently dense random graphs, and the Densest kk-Subgraph problem with sufficiently dense optimal solution. Note, however, that algorithms with similar guarantees to the last algorithm were in fact discovered prior to our work by Feige et al. and Suzuki and Tokuyama. In addition, our idea for the above algorithms yields the following by-product: a quasi-polynomial time approximation scheme (QPTAS) for satisfiable dense Max 2-CSPs with better running time than the known algorithms

    Approximate Convex Optimization by Online Game Playing

    Full text link
    Lagrangian relaxation and approximate optimization algorithms have received much attention in the last two decades. Typically, the running time of these methods to obtain a ϵ\epsilon approximate solution is proportional to 1ϵ2\frac{1}{\epsilon^2}. Recently, Bienstock and Iyengar, following Nesterov, gave an algorithm for fractional packing linear programs which runs in 1ϵ\frac{1}{\epsilon} iterations. The latter algorithm requires to solve a convex quadratic program every iteration - an optimization subroutine which dominates the theoretical running time. We give an algorithm for convex programs with strictly convex constraints which runs in time proportional to 1ϵ\frac{1}{\epsilon}. The algorithm does NOT require to solve any quadratic program, but uses gradient steps and elementary operations only. Problems which have strictly convex constraints include maximum entropy frequency estimation, portfolio optimization with loss risk constraints, and various computational problems in signal processing. As a side product, we also obtain a simpler version of Bienstock and Iyengar's result for general linear programming, with similar running time. We derive these algorithms using a new framework for deriving convex optimization algorithms from online game playing algorithms, which may be of independent interest

    Log-Distributional Approach for Learning Covariate Shift Ratios

    Get PDF
    Distributional Reinforcement Learning theory suggests that distributional fixed points could play a fundamental role to learning non additive value functions. In particular, we propose a distributional approach for learning Covariate Shift Ratios, whose update rule is originally multiplicative
    • …
    corecore