29,270 research outputs found

    Improved Approximation Algorithms for Balanced Partitioning Problems

    Get PDF
    We present approximation algorithms for balanced partitioning problems. These problems are notoriously hard and we present new bicriteria approximation algorithms, that approximate the optimal cost and relax the balance constraint. In the first scenario, we consider Min-Max k-Partitioning, the problem of dividing a graph into k equal-sized parts while minimizing the maximum cost of edges cut by a single part. Our approximation algorithm relaxes the size of the parts by (1+epsilon) and approximates the optimal cost by O(log^{1.5}(n) * log(log(n))), for every 0 < epsilon < 1. This is the first nontrivial algorithm for this problem that relaxes the balance constraint by less than 2. In the second scenario, we consider strategies to find a minimum-cost mapping of a graph of processes to a hierarchical network with identical processors at the leaves. This Hierarchical Graph Partitioning problem has been studied recently by Hajiaghayi et al. who presented an (O(log(n)),(1+epsilon)(h+1)) approximation algorithm for constant network heights h. We use spreading metrics to give an improved (O(log(n)),(1+epsilon)h) approximation algorithm that runs in polynomial time for arbitrary network heights

    New techniques for graph algorithms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 181-192).The growing need to deal efficiently with massive computing tasks prompts us to consider the following question: How well can we solve fundamental optimization problems if our algorithms have to run really quickly? The motivation for the research presented in this thesis stems from addressing the above question in the context of algorithmic graph theory. To pursue this direction, we develop a toolkit that combines a diverse set of modern algorithmic techniques, including sparsification, low-stretch spanning trees, the multiplicative-weights-update method, dynamic graph algorithms, fast Laplacian system solvers, and tools of spectral graph theory. Using this toolkit, we obtain improved algorithms for several basic graph problems including: -- The Maximum s-t Flow and Minimum s-t Cut Problems. We develop a new approach to computing (1 - [epsilon])-approximately maximum s-t flow and (1 + [epsilon])-approximately minimum s-t cut in undirected graphs that gives the fastest known algorithms for these tasks. These algorithms are the first ones to improve the long-standing bound of O(n3/2') running time on sparse graphs; -- Multicommodity Flow Problems. We set forth a new method of speeding up the existing approximation algorithms for multicommodity flow problems, and use it to obtain the fastest-known (1 - [epsilon])-approximation algorithms for these problems. These results improve upon the best previously known bounds by a factor of roughly [omega](m/n), and make the resulting running times essentially match the [omega](mn) "flow-decomposition barrier" that is a natural obstacle to all the existing approaches; -- " Undirected (Multi-)Cut-Based Minimization Problems. We develop a general framework for designing fast approximation algorithms for (multi-)cutbased minimization problems in undirected graphs. Applying this framework leads to the first algorithms for several fundamental graph partitioning primitives, such as the (generalized) sparsest cut problem and the balanced separator problem, that run in close to linear time while still providing polylogarithmic approximation guarantees; -- The Asymmetric Traveling Salesman Problem. We design an O( )- approximation algorithm for the classical problem of combinatorial optimization: the asymmetric traveling salesman problem. This is the first asymptotic improvement over the long-standing approximation barrier of e(log n) for this problem; -- Random Spanning Tree Generation. We improve the bound on the time needed to generate an uniform random spanning tree of an undirected graph.by Aleksander Mądry.Ph.D

    Improved Cheeger's Inequality: Analysis of Spectral Partitioning Algorithms through Higher Order Spectral Gap

    Get PDF
    Let \phi(G) be the minimum conductance of an undirected graph G, and let 0=\lambda_1 <= \lambda_2 <=... <= \lambda_n <= 2 be the eigenvalues of the normalized Laplacian matrix of G. We prove that for any graph G and any k >= 2, \phi(G) = O(k) \lambda_2 / \sqrt{\lambda_k}, and this performance guarantee is achieved by the spectral partitioning algorithm. This improves Cheeger's inequality, and the bound is optimal up to a constant factor for any k. Our result shows that the spectral partitioning algorithm is a constant factor approximation algorithm for finding a sparse cut if \lambda_k$ is a constant for some constant k. This provides some theoretical justification to its empirical performance in image segmentation and clustering problems. We extend the analysis to other graph partitioning problems, including multi-way partition, balanced separator, and maximum cut

    Algorithmic and Statistical Perspectives on Large-Scale Data Analysis

    Full text link
    In recent years, ideas from statistics and scientific computing have begun to interact in increasingly sophisticated and fruitful ways with ideas from computer science and the theory of algorithms to aid in the development of improved worst-case algorithms that are useful for large-scale scientific and Internet data analysis problems. In this chapter, I will describe two recent examples---one having to do with selecting good columns or features from a (DNA Single Nucleotide Polymorphism) data matrix, and the other having to do with selecting good clusters or communities from a data graph (representing a social or information network)---that drew on ideas from both areas and that may serve as a model for exploiting complementary algorithmic and statistical perspectives in order to solve applied large-scale data analysis problems.Comment: 33 pages. To appear in Uwe Naumann and Olaf Schenk, editors, "Combinatorial Scientific Computing," Chapman and Hall/CRC Press, 201
    corecore