39 research outputs found

    Linear Convergence of Adaptively Iterative Thresholding Algorithms for Compressed Sensing

    Full text link
    This paper studies the convergence of the adaptively iterative thresholding (AIT) algorithm for compressed sensing. We first introduce a generalized restricted isometry property (gRIP). Then we prove that the AIT algorithm converges to the original sparse solution at a linear rate under a certain gRIP condition in the noise free case. While in the noisy case, its convergence rate is also linear until attaining a certain error bound. Moreover, as by-products, we also provide some sufficient conditions for the convergence of the AIT algorithm based on the two well-known properties, i.e., the coherence property and the restricted isometry property (RIP), respectively. It should be pointed out that such two properties are special cases of gRIP. The solid improvements on the theoretical results are demonstrated and compared with the known results. Finally, we provide a series of simulations to verify the correctness of the theoretical assertions as well as the effectiveness of the AIT algorithm.Comment: 15 pages, 5 figure

    Limits on Sparse Data Acquisition: RIC Analysis of Finite Gaussian Matrices

    Full text link
    One of the key issues in the acquisition of sparse data by means of compressed sensing (CS) is the design of the measurement matrix. Gaussian matrices have been proven to be information-theoretically optimal in terms of minimizing the required number of measurements for sparse recovery. In this paper we provide a new approach for the analysis of the restricted isometry constant (RIC) of finite dimensional Gaussian measurement matrices. The proposed method relies on the exact distributions of the extreme eigenvalues for Wishart matrices. First, we derive the probability that the restricted isometry property is satisfied for a given sufficient recovery condition on the RIC, and propose a probabilistic framework to study both the symmetric and asymmetric RICs. Then, we analyze the recovery of compressible signals in noise through the statistical characterization of stability and robustness. The presented framework determines limits on various sparse recovery algorithms for finite size problems. In particular, it provides a tight lower bound on the maximum sparsity order of the acquired data allowing signal recovery with a given target probability. Also, we derive simple approximations for the RICs based on the Tracy-Widom distribution.Comment: 11 pages, 6 figures, accepted for publication in IEEE transactions on information theor

    Compressed Sensing: How Sharp Is the Restricted Isometry Property?

    Get PDF
    Compressed sensing (CS) seeks to recover an unknown vector with N entries by making far fewer than N measurements; it posits that the number of CS measurements should be comparable to the information content of the vector, not simply N. CS combines directly the important task of compression with the measurement task. Since its introduction in 2004ther e have been hundreds of papers on CS, a large fraction of which develop algorithms to recover a signal from its compressed measurements. Because of the paradoxical nature of CS-exact reconstruction from seemingly undersampled measurements-it is crucial for acceptance of an algorithm that rigorous analyses verify the degree of undersampling the algorithm permits. The restricted isometry property (RIP) has become the dominant tool used for the analysis in such cases. We present here an asymmetric form of RIP that gives tighter bounds than the usual symmetric one. We give the best known bounds on the RIP constants for matrices from the Gaussian ensemble. Our derivations illustrate the way in which the combinatorial nature of CS is controlled. Our quantitative bounds on the RIP allow precise statements as to how aggressively a signal can be undersampled, the essential question for practitioners. We also document the extent to which RIP gives precise information about the true performance limits of CS, by comparison with approaches from high-dimensional geometry. © 2011 Society for Industrial and Applied Mathematics

    A new and improved quantitative recovery analysis for iterative hard thresholding algorithms in compressed sensing

    Get PDF
    We present a new recovery analysis for a standard compressed sensing algorithm, Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2008), which considers the fixed points of the algorithm. In the context of arbitrary measurement matrices, we derive a sufficient condition for convergence of IHT to a fixed point and a necessary condition for the existence of fixed points. These conditions allow us to perform a sparse signal recovery analysis in the deterministic noiseless case by implying that the original sparse signal is the unique fixed point and limit point of IHT, and in the case of Gaussian measurement matrices and noise by generating a bound on the approximation error of the IHT limit as a multiple of the noise level. By generalizing the notion of fixed points, we extend our analysis to the variable stepsize Normalised IHT (N-IHT) (Blumensath and Davies, 2010). For both stepsize schemes, we obtain asymptotic phase transitions in a proportional-dimensional framework, quantifying the sparsity/undersampling trade-off for which recovery is guaranteed. Exploiting the reasonable average-case assumption that the underlying signal and measurement matrix are independent, comparison with previous results within this framework shows a substantial quantitative improvement
    corecore