52,513 research outputs found

    Pairwise alignment incorporating dipeptide covariation

    Full text link
    Motivation: Standard algorithms for pairwise protein sequence alignment make the simplifying assumption that amino acid substitutions at neighboring sites are uncorrelated. This assumption allows implementation of fast algorithms for pairwise sequence alignment, but it ignores information that could conceivably increase the power of remote homolog detection. We examine the validity of this assumption by constructing extended substitution matrixes that encapsulate the observed correlations between neighboring sites, by developing an efficient and rigorous algorithm for pairwise protein sequence alignment that incorporates these local substitution correlations, and by assessing the ability of this algorithm to detect remote homologies. Results: Our analysis indicates that local correlations between substitutions are not strong on the average. Furthermore, incorporating local substitution correlations into pairwise alignment did not lead to a statistically significant improvement in remote homology detection. Therefore, the standard assumption that individual residues within protein sequences evolve independently of neighboring positions appears to be an efficient and appropriate approximation

    Computational identification and analysis of noncoding RNAs - Unearthing the buried treasures in the genome

    Get PDF
    The central dogma of molecular biology states that the genetic information flows from DNA to RNA to protein. This dogma has exerted a substantial influence on our understanding of the genetic activities in the cells. Under this influence, the prevailing assumption until the recent past was that genes are basically repositories for protein coding information, and proteins are responsible for most of the important biological functions in all cells. In the meanwhile, the importance of RNAs has remained rather obscure, and RNA was mainly viewed as a passive intermediary that bridges the gap between DNA and protein. Except for classic examples such as tRNAs (transfer RNAs) and rRNAs (ribosomal RNAs), functional noncoding RNAs were considered to be rare. However, this view has experienced a dramatic change during the last decade, as systematic screening of various genomes identified myriads of noncoding RNAs (ncRNAs), which are RNA molecules that function without being translated into proteins [11], [40]. It has been realized that many ncRNAs play important roles in various biological processes. As RNAs can interact with other RNAs and DNAs in a sequence-specific manner, they are especially useful in tasks that require highly specific nucleotide recognition [11]. Good examples are the miRNAs (microRNAs) that regulate gene expression by targeting mRNAs (messenger RNAs) [4], [20], and the siRNAs (small interfering RNAs) that take part in the RNAi (RNA interference) pathways for gene silencing [29], [30]. Recent developments show that ncRNAs are extensively involved in many gene regulatory mechanisms [14], [17]. The roles of ncRNAs known to this day are truly diverse. These include transcription and translation control, chromosome replication, RNA processing and modification, and protein degradation and translocation [40], just to name a few. These days, it is even claimed that ncRNAs dominate the genomic output of the higher organisms such as mammals, and it is being suggested that the greater portion of their genome (which does not encode proteins) is dedicated to the control and regulation of cell development [27]. As more and more evidence piles up, greater attention is paid to ncRNAs, which have been neglected for a long time. Researchers began to realize that the vast majority of the genome that was regarded as “junk,” mainly because it was not well understood, may indeed hold the key for the best kept secrets in life, such as the mechanism of alternative splicing, the control of epigenetic variations and so forth [27]. The complete range and extent of the role of ncRNAs are not so obvious at this point, but it is certain that a comprehensive understanding of cellular processes is not possible without understanding the functions of ncRNAs [47]

    Efficient seeding techniques for protein similarity search

    Get PDF
    We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several different design methods and use them to construct several alphabets.We then perform an analysis of seeds built over those alphabet and compare them with the standard Blastp seeding method [2,3], as well as with the family of vector seeds proposed in [4]. While the formalism of subset seed is less expressive (but less costly to implement) than the accumulative principle used in Blastp and vector seeds, our seeds show a similar or even better performance than Blastp on Bernoulli models of proteins compatible with the common BLOSUM62 matrix

    Efficient seeding techniques for protein similarity search

    Get PDF
    We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several different design methods and use them to construct several alphabets.We then perform an analysis of seeds built over those alphabet and compare them with the standard Blastp seeding method [2,3], as well as with the family of vector seeds proposed in [4]. While the formalism of subset seed is less expressive (but less costly to implement) than the accumulative principle used in Blastp and vector seeds, our seeds show a similar or even better performance than Blastp on Bernoulli models of proteins compatible with the common BLOSUM62 matrix

    Identification of functionally related enzymes by learning-to-rank methods

    Full text link
    Enzyme sequences and structures are routinely used in the biological sciences as queries to search for functionally related enzymes in online databases. To this end, one usually departs from some notion of similarity, comparing two enzymes by looking for correspondences in their sequences, structures or surfaces. For a given query, the search operation results in a ranking of the enzymes in the database, from very similar to dissimilar enzymes, while information about the biological function of annotated database enzymes is ignored. In this work we show that rankings of that kind can be substantially improved by applying kernel-based learning algorithms. This approach enables the detection of statistical dependencies between similarities of the active cleft and the biological function of annotated enzymes. This is in contrast to search-based approaches, which do not take annotated training data into account. Similarity measures based on the active cleft are known to outperform sequence-based or structure-based measures under certain conditions. We consider the Enzyme Commission (EC) classification hierarchy for obtaining annotated enzymes during the training phase. The results of a set of sizeable experiments indicate a consistent and significant improvement for a set of similarity measures that exploit information about small cavities in the surface of enzymes

    Pair HMM based gap statistics for re-evaluation of indels in alignments with affine gap penalties: Extended Version

    Full text link
    Although computationally aligning sequence is a crucial step in the vast majority of comparative genomics studies our understanding of alignment biases still needs to be improved. To infer true structural or homologous regions computational alignments need further evaluation. It has been shown that the accuracy of aligned positions can drop substantially in particular around gaps. Here we focus on re-evaluation of score-based alignments with affine gap penalty costs. We exploit their relationships with pair hidden Markov models and develop efficient algorithms by which to identify gaps which are significant in terms of length and multiplicity. We evaluate our statistics with respect to the well-established structural alignments from SABmark and find that indel reliability substantially increases with their significance in particular in worst-case twilight zone alignments. This points out that our statistics can reliably complement other methods which mostly focus on the reliability of match positions.Comment: 17 pages, 7 figure
    • …
    corecore