530 research outputs found

    A Data Driven Modeling Approach for Store Distributed Load and Trajectory Prediction

    Get PDF
    The task of achieving successful store separation from aircraft and spacecraft has historically been and continues to be, a critical issue for the aerospace industry. Whether it be from store-on-store wake interactions, store-parent body interactions or free stream turbulence, a failed case of store separation poses a serious risk to aircraft operators. Cases of failed store separation do not simply imply missing an intended target, but also bring the risk of collision with, and destruction of, the parent body vehicle. Given this risk, numerous well-tested procedures have been developed to help analyze store separation within the safe confines of wind tunnels. However, due to increased complexity in store separation configurations, such as rotorcraft and cavity-based separation, there is a growing desire to incorporate computational fluid dynamics (CFD) into the early stages of the store separation analysis. A viable method for achieving this objective is available through data-driven surrogate modeling of store distributed loads. This dissertation investigates the practicality of applying various data-driven modeling techniques to the field of store separation. These modeling methods will be applied to four demonstration scenarios: reduced order modeling of a moving store, design optimization, supersonic store separation, and rotorcraft store separation. For the first demonstration scenario, results are presented for three sub-tasks. In the first sub-task proper orthogonal decomposition (POD), dynamic mode decomposition (DMD), and convolutional neural networks (CNN) were compared for their capability to replicate distributed pressure loads of a pitching up prolate spheroid. Results indicated that POD was the most efficient approach for surrogate model generation. For the second sub-task, a POD-based surrogate model was derived from CFD simulations of an oscillating prolate spheroid subject to varying reduced frequency and amplitude of oscillation. The obtained surrogate model was shown to provide high-fidelity predictions for new combinations of reduced frequency and amplitude with a maximum percent error of integrated loads of less than 3\%. Therefore, it was demonstrated that the surrogate model was capable of predicting accurately at intermediate states. Further analysis showed a similar surrogate model could be generated to provide accurate store trajectory modeling under subsonic, transonic, and supersonic conditions. In the second demonstration scenario, a POD-based surrogate model is derived from a series of CFD simulations of isolated rotors in hover and forward flight. The derived surrogate models for hover and forward flight were shown to provide integrated load predictions within 1% of direct CFD simulation. Additionally, results indicated that computational expense could be reduced from 20 hours on 440 CPUs to less than a second on a single CPU. Given the reduction of cost and high fidelity of the surrogate model, the derived model was leveraged to optimize the twist and taper ratio of the rotor such that the efficiency of the rotor was maximized. For the third demonstration scenario, a POD and CNN surrogate model was derived for fixed-wing based supersonic store separation. Results demonstrated that both models were capable of providing high-fidelity predictions of the store\u27s distributed loads and subsequent trajectory. For the final demonstration scenario, a POD-based surrogate model was derived for the case of a store launching from a rotorcraft. The surrogate model was derived from three CFD simulations while varying ejection force. This surrogate model was then validated against CFD simulation of a new store ejection force. Results indicated that while the surrogate model struggled to provide detailed predictions of store distributed loads, mean load variations could be modeled well at a massively reduced computational cost. For each rotorcraft store separation CFD simulation, the computational cost required 10 days of simulation time across 880. While using the surrogate model, comparable predictions could be produced in under a minute on a single core. Overall findings from this study indicate that massive CFD generated data-sets can be efficiently leveraged to create meaningful surrogate models capable of being deployed to highly iterative design tasks relevant to store separation. Through further improvements, similar surrogate models can be combined with a control strategy to achieve trajectory optimization and control

    Novel Algorithms for Merging Computational Fluid Dynamics and 4D Flow MRI

    Get PDF
    Time-resolved three-dimensional spatial encoding combined with three-directional velocity-encoded phase contrast magnetic resonance imaging (termed as 4D flow MRI), can provide valuable information for diagnosis, treatment, and monitoring of vascular diseases. The accuracy of this technique, however, is limited by errors in flow estimation due to acquisition noise as well as systematic errors. Furthermore, available spatial resolution is limited to 1.5mm - 3mm and temporal resolution is limited to 30-40ms. This is often grossly inadequate to resolve flow details in small arteries, such as those in cerebral circulation. Recently, there have been efforts to address the limitations of the spatial and temporal resolution of MR flow imaging through the use of computational fluid dynamics (CFD). While CFD is capable of providing essentially unlimited spatial and temporal resolution, numerical results are very sensitive to errors in estimation of the flow boundary conditions. In this work, we present three novel techniques that combine CFD with 4D flow MRI measurements in order to address the resolution and noise issues. The first technique is a variant of the Kalman Filter state estimator called the Ensemble Kalman Filter (EnKF). In this technique, an ensemble of patient-specific CFD solutions are used to compute filter gains. These gains are then used in a predictor-corrector scheme to not only denoise the data but also increase its temporal and spatial resolution. The second technique is based on proper orthogonal decomposition and ridge regression (POD-rr). The POD method is typically used to generate reduced order models (ROMs) in closed control applications of large degree of freedom systems that result from discretization of governing partial differential equations (PDE). The POD-rr process results in a set of basis functions (vectors), that capture the local space of solutions of the PDE in question. In our application, the basis functions are generated from an ensemble of patient-specific CFD solutions whose boundary conditions are estimated from 4D flow MRI data. The CFD solution that should be most closely representing the actual flow is generated by projecting 4D flow MRI data onto the basis vectors followed by reconstruction in both MRI and CFD resolution. The rr algorithm was used for between resolution mapping. Despite the accuracy of using rr as the mapping step, due to manual adjustment of a coefficient in the algorithm we developed the third algorithm. In this step, the rr algorithm was substituded with a dynamic mode decomposition algorithm to preserve the robustness. These algorithms have been implemented and tested using a numerical model of the flow in a cerebral aneurysm. Solutions at time intervals corresponding to the 4D flow MRI temporal resolution were collected and downsampled to the spatial resolution of the imaging data. A simulated acquisition noise was then added in k-space. Finally, the simulated data affected by noise were used as an input to the merging algorithms. Rigorous comparison to state-of-the-art techniques were conducted to assess the accuracy and performance of the proposed method. The results provided denoised flow fields with less than 1\% overall error for different signal-to-noise ratios. At the end, a small cohort of three patients were corrected and the data were reconstructed using different methods, the wall shear stress (WSS) was calculated using different reconstructed data and the results were compared. As it has been shown in chapter 5, the calculated WSS using different methods results in mutual high and low shear stress regions, however, the exact value and patterns are significantly different

    A Swin-Transformer-based Model for Efficient Compression of Turbulent Flow Data

    Full text link
    This study proposes a novel deep-learning-based method for generating reduced representations of turbulent flows that ensures efficient storage and transfer while maintaining high accuracy during decompression. A Swin-Transformer network combined with a physical constraints-based loss function is utilized to compress the turbulent flows with high compression ratios and then restore the data with the underlying physical properties. The forced isotropic turbulent flow is used to demonstrate the ability of the Swin-Transformer-based (ST) model, where the instantaneous and statistical results show the excellent ability of the model to recover the flow data with remarkable accuracy. Furthermore, the capability of the ST model is compared with a typical Convolutional Neural Network-based auto-encoder (CNN-AE) by using the turbulent channel flow at two friction Reynolds numbers ReτRe_\tau = 180 and 550. The results generated by the ST model are significantly more consistent with the DNS data than those recovered by the CNN-AE, indicating the superior ability of the ST model to compress and restore the turbulent flow. This study also compares the compression performance of the ST model at different compression ratios (CR) and finds that the model has low enough error even at very high CR. Additionally, the effect of transfer learning (TL) is investigated, showing that TL reduces the training time by 64\% while maintaining high accuracy. The results illustrate for the first time that the Swin-Transformer-based model incorporating a physically constrained loss function can compress and restore turbulent flows with the correct physics.Comment: 21 page, 16 figure

    Unstructured Grid Generation Techniques and Software

    Get PDF
    The Workshop on Unstructured Grid Generation Techniques and Software was conducted for NASA to assess its unstructured grid activities, improve the coordination among NASA centers, and promote technology transfer to industry. The proceedings represent contributions from Ames, Langley, and Lewis Research Centers, and the Johnson and Marshall Space Flight Centers. This report is a compilation of the presentations made at the workshop

    Machine learning algorithms for fluid mechanics

    Get PDF
    Neural networks have become increasingly popular in the field of fluid dynamics due to their ability to model complex, high-dimensional flow phenomena. Their flexibility in approximating continuous functions without any preconceived notion of functional form makes them a suitable tool for studying fluid dynamics. The main uses of neural networks in fluid dynamics include turbulence modelling, flow control, prediction of flow fields, and accelerating high-fidelity simulations. This thesis focuses on the latter two applications of neural networks. First, the application of a convolutional neural network (CNN) to accelerate the solution of the Poisson equation step in the pressure projection method for incompressible fluid flows is investigated. The CNN learns to approximate the Poisson equation solution at a lower computational cost than traditional iterative solvers, enabling faster simulations of fluid flows. Results show that the CNN approach is accurate and efficient, achieving significant speedup in the Taylor-Green Vortex problem. Next, predicting flow fields past arbitrarily-shaped bluff bodies from point sensor and plane velocity measurements using neural networks is focused on. A novel conformal-mapping-aided method is devised to embed geometry invariance for the outputs of the neural networks, which is shown to be critical for achieving good performance for flow datasets incorporating a diverse range of geometries. Results show that the proposed methods can accurately predict the flow field, demonstrating excellent agreement with simulation data. Moreover, the flow field predictions can be used to accurately predict lift and drag coefficients, making these methods useful for optimizing the shape of bluff bodies for specific applications.Open Acces

    Spatial Analysis for Landscape Changes

    Get PDF
    Recent increasing trends of the occurrence of natural and anthropic processes have a strong impact on landscape modification, and there is a growing need for the implementation of effective instruments, tools, and approaches to understand and manage landscape changes. A great improvement in the availability of high-resolution DEMs, GIS tools, and algorithms of automatic extraction of landform features and change detections has favored an increase in the analysis of landscape changes, which became an essential instrument for the quantitative evaluation of landscape changes in many research fields. One of the most effective ways of investigating natural landscape changes is the geomorphological one, which benefits from recent advances in the development of digital elevation model (DEM) comparison software and algorithms, image change detection, and landscape evolution models. This Special Issue collects six papers concerning the application of traditional and innovative multidisciplinary methods in several application fields, such as geomorphology, urban and territorial systems, vegetation restoration, and soil science. The papers include multidisciplinary studies that highlight the usefulness of quantitative analyses of satellite images and UAV-based DEMs, the application of Landscape Evolution Models (LEMs) and automatic landform classification algorithms to solve multidisciplinary issues of landscape changes. A review article is also presented, dealing with the bibliometric analysis of the research topic

    Gust Loads Reconstruction for In-Service Support

    Get PDF

    Structured grid generation for gas turbine combustion systems

    Get PDF
    Commercial pressures to reduce time-scales encourage innovation in the design and analysis cycle of gas turbine combustion systems. The migration of Computational Fluid Dynamics (CFD) from the purview of the specialist into a routine analysis tool is crucial to achieve these reductions and forms the focus of this research. Two significant challenges were identified: reducing the time-scale for creating and solving a CFD prediction and reducing the level of expertise required to perform a prediction. The commercial pressure for the rapid production of CFD predictions, coupled with the desire to reduce the risk associated with adopting a new technology led, following a review of available techniques, to the identification of structured grids as the current optimum methodology. It was decided that the task of geometry definition would be entirely performed within commercial Computer Aided Design (CAD) systems. A critical success factor for this research was the adoption of solid models for the geometry representation. Solids ensure consistency, and accuracy, whilst eliminating the need for the designer to undertake difficult, and time consuming, geometry repair operations. The versatility of parametric CAD systems were investigated on the complex geometry of a combustion system and found to be useful in reducing the overhead in altering the geometry for a CFD prediction. Accurate and robust transfer between CAD and CFD systems was achieved by the use of direct translators. Restricting the geometry definition to solid models allowed a novel two stage grid generator to be developed. In stage one an initial algebraic grid is created. This reduces user interaction to a minimum, by the employment of a series of logical rules based on the solid model to fill in any missing grid boundary condition data. In stage two the quality of the grid is improved by redistributing nodes using elliptical partial differential equations. A unique approach of improving grid quality by simultaneously smoothing both internal and surface grids was implemented. The smoothing operation was responsible for quality, and therefore reduced the level of grid generation expertise required. The successful validation of this research was demonstrated using several test cases including a CFD prediction of a complete combustion system
    • …
    corecore