50,820 research outputs found

    A survey of QoS-aware web service composition techniques

    Get PDF
    Web service composition can be briefly described as the process of aggregating services with disparate functionalities into a new composite service in order to meet increasingly complex needs of users. Service composition process has been accurate on dealing with services having disparate functionalities, however, over the years the number of web services in particular that exhibit similar functionalities and varying Quality of Service (QoS) has significantly increased. As such, the problem becomes how to select appropriate web services such that the QoS of the resulting composite service is maximized or, in some cases, minimized. This constitutes an NP-hard problem as it is complicated and difficult to solve. In this paper, a discussion of concepts of web service composition and a holistic review of current service composition techniques proposed in literature is presented. Our review spans several publications in the field that can serve as a road map for future research

    Towards robust and reliable multimedia analysis through semantic integration of services

    Get PDF
    Thanks to ubiquitous Web connectivity and portable multimedia devices, it has never been so easy to produce and distribute new multimedia resources such as videos, photos, and audio. This ever-increasing production leads to an information overload for consumers, which calls for efficient multimedia retrieval techniques. Multimedia resources can be efficiently retrieved using their metadata, but the multimedia analysis methods that can automatically generate this metadata are currently not reliable enough for highly diverse multimedia content. A reliable and automatic method for analyzing general multimedia content is needed. We introduce a domain-agnostic framework that annotates multimedia resources using currently available multimedia analysis methods. By using a three-step reasoning cycle, this framework can assess and improve the quality of multimedia analysis results, by consecutively (1) combining analysis results effectively, (2) predicting which results might need improvement, and (3) invoking compatible analysis methods to retrieve new results. By using semantic descriptions for the Web services that wrap the multimedia analysis methods, compatible services can be automatically selected. By using additional semantic reasoning on these semantic descriptions, the different services can be repurposed across different use cases. We evaluated this problem-agnostic framework in the context of video face detection, and showed that it is capable of providing the best analysis results regardless of the input video. The proposed methodology can serve as a basis to build a generic multimedia annotation platform, which returns reliable results for diverse multimedia analysis problems. This allows for better metadata generation, and improves the efficient retrieval of multimedia resources

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa
    corecore