8,805 research outputs found

    Detection of unattended and stolen objects in videos

    Get PDF
    Abstract-This research work presents an efficient approach of detecting unattended or stolen objects in live videos based on background subtraction and foreground analysis. The most common algorithm for performing background subtraction is the Gaussian Mixture model (GMM). An improved Multi-Gaussian Adaptive background model is employed for background subtraction to determine the static region. A simple split and merge method is used to detect the static region from which the static objects are identified. The time and presence of static objects, which may be either unattended or stolen, are informed by sending a mail and SMS to the security officials. Also, Haralick's texture operators are employed for images to identify objects under low contrast situations. The system is efficient to run in real time and produce good results

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Flame Detection for Video-based Early Fire Warning Systems and 3D Visualization of Fire Propagation

    Get PDF
    Early and accurate detection and localization of flame is an essential requirement of modern early fire warning systems. Video-based systems can be used for this purpose; however, flame detection remains a challenging issue due to the fact that many natural objects have similar characteristics with fire. In this paper, we present a new algorithm for video based flame detection, which employs various spatio-temporal features such as colour probability, contour irregularity, spatial energy, flickering and spatio-temporal energy. Various background subtraction algorithms are tested and comparative results in terms of computational efficiency and accuracy are presented. Experimental results with two classification methods show that the proposed methodology provides high fire detection rates with a reasonable false alarm ratio. Finally, a 3D visualization tool for the estimation of the fire propagation is outlined and simulation results are presented and discussed.The original article was published by ACTAPRESS and is available here: http://www.actapress.com/Content_of_Proceeding.aspx?proceedingid=73

    Foreground Detection in Camouflaged Scenes

    Full text link
    Foreground detection has been widely studied for decades due to its importance in many practical applications. Most of the existing methods assume foreground and background show visually distinct characteristics and thus the foreground can be detected once a good background model is obtained. However, there are many situations where this is not the case. Of particular interest in video surveillance is the camouflage case. For example, an active attacker camouflages by intentionally wearing clothes that are visually similar to the background. In such cases, even given a decent background model, it is not trivial to detect foreground objects. This paper proposes a texture guided weighted voting (TGWV) method which can efficiently detect foreground objects in camouflaged scenes. The proposed method employs the stationary wavelet transform to decompose the image into frequency bands. We show that the small and hardly noticeable differences between foreground and background in the image domain can be effectively captured in certain wavelet frequency bands. To make the final foreground decision, a weighted voting scheme is developed based on intensity and texture of all the wavelet bands with weights carefully designed. Experimental results demonstrate that the proposed method achieves superior performance compared to the current state-of-the-art results.Comment: IEEE International Conference on Image Processing, 201

    Background Subtraction via Generalized Fused Lasso Foreground Modeling

    Full text link
    Background Subtraction (BS) is one of the key steps in video analysis. Many background models have been proposed and achieved promising performance on public data sets. However, due to challenges such as illumination change, dynamic background etc. the resulted foreground segmentation often consists of holes as well as background noise. In this regard, we consider generalized fused lasso regularization to quest for intact structured foregrounds. Together with certain assumptions about the background, such as the low-rank assumption or the sparse-composition assumption (depending on whether pure background frames are provided), we formulate BS as a matrix decomposition problem using regularization terms for both the foreground and background matrices. Moreover, under the proposed formulation, the two generally distinctive background assumptions can be solved in a unified manner. The optimization was carried out via applying the augmented Lagrange multiplier (ALM) method in such a way that a fast parametric-flow algorithm is used for updating the foreground matrix. Experimental results on several popular BS data sets demonstrate the advantage of the proposed model compared to state-of-the-arts
    • …
    corecore