10 research outputs found

    Improved Accuracy and Parallelism for MRRR-based Eigensolvers -- A Mixed Precision Approach

    Get PDF
    The real symmetric tridiagonal eigenproblem is of outstanding importance in numerical computations; it arises frequently as part of eigensolvers for standard and generalized dense Hermitian eigenproblems that are based on a reduction to tridiagonal form. For its solution, the algorithm of Multiple Relatively Robust Representations (MRRR) is among the fastest methods. Although fast, the solvers based on MRRR do not deliver the same accuracy as competing methods like Divide & Conquer or the QR algorithm. In this paper, we demonstrate that the use of mixed precisions leads to improved accuracy of MRRR-based eigensolvers with limited or no performance penalty. As a result, we obtain eigensolvers that are not only equally or more accurate than the best available methods, but also -in most circumstances- faster and more scalable than the competition

    MRRR-based Eigensolvers for Multi-core Processors and Supercomputers

    Get PDF
    The real symmetric tridiagonal eigenproblem is of outstanding importance in numerical computations; it arises frequently as part of eigensolvers for standard and generalized dense Hermitian eigenproblems that are based on a reduction to tridiagonal form. For its solution, the algorithm of Multiple Relatively Robust Representations (MRRR or MR3 in short) - introduced in the late 1990s - is among the fastest methods. To compute k eigenpairs of a real n-by-n tridiagonal T, MRRR only requires O(kn) arithmetic operations; in contrast, all the other practical methods require O(k^2 n) or O(n^3) operations in the worst case. This thesis centers around the performance and accuracy of MRRR.Comment: PhD thesi

    High-Performance Solvers for Dense Hermitian Eigenproblems

    Full text link
    We introduce a new collection of solvers - subsequently called EleMRRR - for large-scale dense Hermitian eigenproblems. EleMRRR solves various types of problems: generalized, standard, and tridiagonal eigenproblems. Among these, the last is of particular importance as it is a solver on its own right, as well as the computational kernel for the first two; we present a fast and scalable tridiagonal solver based on the Algorithm of Multiple Relatively Robust Representations - referred to as PMRRR. Like the other EleMRRR solvers, PMRRR is part of the freely available Elemental library, and is designed to fully support both message-passing (MPI) and multithreading parallelism (SMP). As a result, the solvers can equally be used in pure MPI or in hybrid MPI-SMP fashion. We conducted a thorough performance study of EleMRRR and ScaLAPACK's solvers on two supercomputers. Such a study, performed with up to 8,192 cores, provides precise guidelines to assemble the fastest solver within the ScaLAPACK framework; it also indicates that EleMRRR outperforms even the fastest solvers built from ScaLAPACK's components

    Mixed-Precision Numerical Linear Algebra Algorithms: Integer Arithmetic Based LU Factorization and Iterative Refinement for Hermitian Eigenvalue Problem

    Get PDF
    Mixed-precision algorithms are a class of algorithms that uses low precision in part of the algorithm in order to save time and energy with less accurate computation and communication. These algorithms usually utilize iterative refinement processes to improve the approximate solution obtained from low precision to the accuracy we desire from doing all the computation in high precision. Due to the demand of deep learning applications, there are hardware developments offering different low-precision formats including half precision (FP16), Bfloat16 and integer operations for quantized integers, which uses integers with a shared scalar to represent a set of equally spaced numbers. As new hardware architectures focus on bringing performance in these formats, the mixed-precision algorithms have more potential leverage on them and outmatch traditional fixed-precision algorithms. This dissertation consists of two articles. In the first article, we adapt one of the most fundamental algorithms in numerical linear algebra---LU factorization with partial pivoting--- to use integer arithmetic. With the goal of obtaining a low accuracy factorization as the preconditioner of generalized minimal residual (GMRES) to solve systems of linear equations, the LU factorization is adapted to use two different fixed-point formats for matrices L and U. A left-looking variant is also proposed for matrices with unbounded column growth. Finally, GMRES iterative refinement has shown that it can work on matrices with condition numbers up to 10000 with the algorithm that uses int16 as input and int32 accumulator for the update step. The second article targets symmetric and Hermitian eigenvalue problems. In this section we revisit the SICE algorithm from Dongarra et al. By applying the Sherman-Morrison formula on the diagonally-shifted tridiagonal systems, we propose an updated SICE-SM algorithm. By incorporating the latest two-stage algorithms from the PLASMA and MAGMA software libraries for numerical linear algebra, we achieved up to 3.6x speedup using the mixed-precision eigensolver with the blocked SICE-SM algorithm for iterative refinement when compared with full double complex precision solvers for the cases with a portion of eigenvalues and eigenvectors requested

    Studies in Rheology: Molecular Simulation and Theory

    Get PDF
    With an enormous advance in the capability of computers during the last fewdecades, the computer simulation has become an important tool for scientific researches in many areas such as physics, chemistry, biology, and so on. In particular, moleculardynamics (MD) simulations have been proven to be of a great help in understanding the rheology of complex fluids from the fundamental microscopic viewpoint. There are two important standard flows in rheology: shear flow and elongational flow. While there exist suitable nonequilibrium MD (NEMD) algorithms of shear flows, such as the Lees-Edwards purely boundary-driven algorithm and the so-called SLLOD algorithm as a field-driven algorithm, a proper NEMD algorithm for elongational flow has been lacking. The main difficulty of simulating elongational flow lies in the limited simulation time available due to the contraction of one or two dimensions dictated by itskinematics. This problem, however, has been partially resolved by Kraynik and Reinelt’s ingenious discovery of the temporal and spatial periodicity of lattice vectors in planar elongational flow (PEF). Although there have been a few NEMD simulations of PEF using their idea, another serious defect has recently been reported when using the SLLOD algorithm in PEF: for adiabatic systems, the total linear momentum of the system in the contracting direction grows exponentially with time, which eventually leads to an aphysical phase transition.This problem has been completely resolved by using the so-called ‘proper-SLLOD’ or ‘p-SLLOD’ algorithm, whose development has been one of the mainaccomplishments of this study. The fundamental correctness of the p-SLLOD algorithm has been demonstrated quite thoroughly in this work through detailed theoretical analyses together with direct simulation results. Both theoretical and simulation works achieved in this research are expected to play a significant role in advancing the knowledge of rheology, as well as that of NEMD simulation itself for other types of flow in general. Another important achievement in this work is the demonstration of the possibility of predicting a liquid structure in nonequilibrium states by employing a concept of ‘hypothetical’ nonequilibrium potentials. The methodology developed in this work has been shown to have good potential for further developments in this field

    Mixed precision bisection

    Get PDF
    We discuss the implementation of the bisection algorithm for the computation of the eigenvalues of symmetric tridiagonal matrices in a context of mixed precision arithmetic. This approach is motivated by the emergence of processors which carry out floating-point operations much faster in single precision than they do in double precision. Perturbation theory results are used to decide when to switch from single to double precision. Numerical examples are presente

    A Novel Parallel QR Algorithm For Hybrid Distributed Memory HPC Systems

    Get PDF
    A novel variant of the parallel QR algorithm for solving dense nonsymmetric eigenvalue problems on hybrid distributed high performance computing systems is presented. For this purpose, we introduce the concept of multiwindow bulge chain chasing and parallelize aggressive early deflation. The multiwindow approach ensures that most computations when chasing chains of bulges are performed in level 3 BLAS operations, while the aim of aggressive early deflation is to speed up the convergence of the QR algorithm. Mixed MPI-OpenMP coding techniques are utilized for porting the codes to distributed memory platforms with multithreaded nodes, such as multicore processors. Numerous numerical experiments confirm the superior performance of our parallel QR algorithm in comparison with the existing ScaLAPACK code, leading to an implementation that is one to two orders of magnitude faster for sufficiently large problems, including a number of examples from applications
    corecore