87 research outputs found

    EPS/Metop-SG Scatterometer Mission Science Plan

    Get PDF
    89 pages, figures, tablesThis Science Plan describes the heritage, background, processing and control of C-band scatterometer data and its remaining exploitation challenges in view of SCA on EPS/MetOp-SGPeer reviewe

    Development of high-resolution L4 ocean wind products

    Get PDF
    [eng] Heat, moisture, gas, and momentum exchanges at the oceanic and atmospheric interface modulate, inter alia, the Earth’s heat and carbon budgets, global circulation, and dynamical modes. Sea surface winds are fundamental to these exchanges and, as such, play a major role in the evolution and dynamics of the Earth’s climate. For ocean and atmospheric modeling purposes, and for their coupling, accurate sea-surface winds are therefore crucial to properly estimate these turbulent fluxes. Over the last decades, as numerical models became more sophisticated, the requirements for higher temporal and spatial resolution ocean forcing products grew. Sea surface winds from numerical weather prediction (NWP) models provide a convenient temporal and spatial coverage to force ocean models, and for that they are extensively used, e.g., the European Centre for Medium-range Weather Forecasts (ECMWF) latest reanalysis, ERA5, with ubiquitous hourly estimates of sea-surface wind available globally on a 30-km spatial grid. However, local systematic errors have been reported in global NWP fields using collocated scatterometer observations as reference. These rather persistent errors are associated with physical processes that are absent or misrepresented by the NWP models, e.g., strong current effects like the Western Boundary Current Systems (highly stationary), wind effects as- sociated with the oceanic mesoscale (sea surface temperature gradients), coastal effects (land see breezes, katabatic winds), Planetary Boundary Layer parameterization errors, and large-scale circulation effects, such as those associated with moist convection areas. In contrast, the ocean surface vector wind or wind stress derived from scatterometers, although intrinsically limited by temporal and spatial sampling, exhibits considerable spatial detail and accuracy. The latter has an effective resolution of 25 km while that of NWP models is of 150 km. Consequently, the biases between the two mostly represent the physical processes unresolved by NWP models. In this thesis, a high-resolution ocean surface wind forcing, the so-called ERAú, that combines the strengths of both the scatterometer observations and of the atmospheric model wind fields is created using a scatterometer-based local NWP wind vector model bias correction. ERAú stress equivalent wind (U10S) is generated by means of a geolocated scatterometer-based correction applied separately to two different ECMWF reanalyses, the nowadays obsolete ERA-interim (ERAi) and the most recent ERA5. Several ERAú configurations using complementary scatterometer data accumulated over different temporal windows (TW) are generated and verified against independent wind sources (scatterometer and moored buoys), through statistical and spectral analysis of spatial structures. The newly developed method successfully corrects for local wind vector biases in the reanalysis output, particularly in open ocean regions, by introducing the oceanic mesoscales captured by the scatterometers into the ERAi/ERA5 NWP reanalyses. However, the effectiveness of the method is intrinsically dependent on regional scatterometer sampling, wind variability and local bias persistence. The optimal ERAú uses multiple complementary scatterometers and a 3-day TW. Bias patterns are the same for ERAi and ERA5 SC to the reanalyses, though the latter shows smaller bias amplitudes and hence smaller error variance reduction differences in verification (up to 8% globally). However, because of ERA5 being more accurate than ERAi, ERAú derived from ERA5 turns out to be the highest quality product. ERAú ocean forcing does not enhance the sensitivity in global circulation models to highly localized transient events, however it improves large-scale ocean simulations, where large- scale corrections are relevant. Besides ocean forcing studies, the developed methodology can be further applied to improve scatterometer wind data assimilation by accounting for the persistent model biases. In addition, since the biases can be associated with misrepresented processes and parmeterizations, empirical predictors of these biases can be developed for use in forecasting and to improve the dynamical closure and parameterizations in coupled ocean-atmosphere models.[spa] Los vientos de la superficie del mar son fundamentales para estimar los flujos de calor y momento en la interfaz oceánica-atmosfera, ocupando un papel importante en la evolución y la dinámica del clima del planeta. Por tanto, en modelación (oceánica y atmosférica), vientos de calidad son cruciales para estimar adecuadamente estos flujos turbulentos. Vientos de la superficie del mar de salidas de modelos de predicción numérica del tiempo (NWP) proporcionan una cobertura temporal y espacial conveniente para forzar los modelos oceánicos, y todavía se utilizan ampliamente. Sin embargo, se han documentado errores sistemáticos locales en campos de NWP globales utilizando observaciones de dispersómetros co-ubicados como referencia (asociados con procesos físicos que ausentes o mal representados por los modelos). Al contrario, el viento de la superficie del mar derivado de los dispersómetros, aunque intrínsecamente limitado por el muestreo temporal y espacial, presenta una precisión y un detalle espacial considerables. Consecuentemente, los sesgos entre los dos representan principalmente los procesos físicos no resueltos por los modelos NWP. En esta tesis, se crea un producto de forzamiento del viento en la superficie del océano de alta resolución, el ERAú. ERAú se genera con una corrección media basada en diferencias geolocalizadas entre dispersometro y modelo, aplicadas por separado a dos reanálisis diferentes, el ERA-interim (ERAi) y el ERA5. Varias configuraciones de ERAú utilizando datos de dispersómetros complementarios acumulados en diferentes ventanas tempo- rales (TW) se generan y validan frente a datos de viento independientes, a través de análisis estadísticos y espectrales de estructuras espaciales. El método corrige con éxito los sesgos del vector de viento local de la reanálisis. Sin embargo, su eficacia depende del muestreo del dispersómetro regional, la variabilidad del viento y la persistencia del sesgo local. El ERAú óptimo utiliza múltiples dispersómetros complementarios y un TW de 3 días. Las dos reanálisis muestran los mismos patrones de sesgo en la SC, debido a que ERA5 es más preciso que ERAi, ERAú derivado de ERA5 es el producto de mayor calidad. El forzamiento oceánico ERAú mejora las simulaciones oceánicas a gran escala, donde las correcciones a gran escala son relevantes

    Second-order structure function analysis of scatterometer winds over the Tropical Pacific

    Get PDF
    22 pages, 16 figures, 1 tableKolmogorov second-order structure functions are used to quantify and compare the small-scale information contained in near-surface ocean wind products derived from measurements by ASCAT on MetOp-A and SeaWinds on QuikSCAT. Two ASCAT and three SeaWinds products are compared in nine regions (classified as rainy or dry) in the tropical Pacific between 10°S and 10°N and 140° and 260°E for the period November 2008 to October 2009. Monthly and regionally averaged longitudinal and transverse structure functions are calculated using along-track samples. To ease the analysis, the following quantities were estimated for the scale range 50 to 300 km and used to intercompare the wind products: (i) structure function slopes, (ii) turbulent kinetic energies (TKE), and (iii) vorticity-to-divergence ratios. All wind products are in good qualitative agreement, but also have important differences. Structure function slopes and TKE differ per wind product, but also show a common variation over time and space. Independent of wind product, longitudinal slopes decrease when sea surface temperature exceeds the threshold for onset of deep convection (about 28°C). In rainy areas and in dry regions during rainy periods, ASCAT has larger divergent TKE than SeaWinds, while SeaWinds has larger vortical TKE than ASCAT. Differences between SeaWinds and ASCAT vortical TKE and vorticity-to-divergence ratios for the convectively active months of each region are large. © 2014. American Geophysical Union. All Rights ReservedThe ASCAT-12.5 and ASCAT-25 data used in this work can be ordered online from the EUMETSAT Data Centre (www.eumetsat.int) as SAF type data in BUFR or NetCDF format. They can also be ordered from PO.DAAC (podaac.jpl.nasa.gov) in NetCDF format only. The SeaWinds-NOAA and QuikSCAT-12.5 data are also available from PO.DAAC. The SeaWinds-KNMI data are available from the KNMI archive upon an email request to [email protected]. Rain-rates and sea surface temperatures were obtained from the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) archive at the Remote Sensing Systems web site (www.ssmi.com). SeaWinds Radiometer (SRAD) rain-rates were obtained from the QuikSCAT 25 km L2B science data product that is available from PO.DAAC. This work has been funded by EUMETSAT in the context of the Numerical Weather Prediction Satellite Applications Facility (NWP SAF). The contribution of GPK has been supported by EUMETSAT as part of the SAF Visiting Scientists programmePeer Reviewe

    Satellite remote sensing of surface winds, waves, and currents: Where are we now?

    Get PDF
    This review paper reports on the state-of-the-art concerning observations of surface winds, waves, and currents from space and their use for scientific research and subsequent applications. The development of observations of sea state parameters from space dates back to the 1970s, with a significant increase in the number and diversity of space missions since the 1990s. Sensors used to monitor the sea-state parameters from space are mainly based on microwave techniques. They are either specifically designed to monitor surface parameters or are used for their abilities to provide opportunistic measurements complementary to their primary purpose. The principles on which is based on the estimation of the sea surface parameters are first described, including the performance and limitations of each method. Numerous examples and references on the use of these observations for scientific and operational applications are then given. The richness and diversity of these applications are linked to the importance of knowledge of the sea state in many fields. Firstly, surface wind, waves, and currents are significant factors influencing exchanges at the air/sea interface, impacting oceanic and atmospheric boundary layers, contributing to sea level rise at the coasts, and interacting with the sea-ice formation or destruction in the polar zones. Secondly, ocean surface currents combined with wind- and wave- induced drift contribute to the transport of heat, salt, and pollutants. Waves and surface currents also impact sediment transport and erosion in coastal areas. For operational applications, observations of surface parameters are necessary on the one hand to constrain the numerical solutions of predictive models (numerical wave, oceanic, or atmospheric models), and on the other hand to validate their results. In turn, these predictive models are used to guarantee safe, efficient, and successful offshore operations, including the commercial shipping and energy sector, as well as tourism and coastal activities. Long-time series of global sea-state observations are also becoming increasingly important to analyze the impact of climate change on our environment. All these aspects are recalled in the article, relating to both historical and contemporary activities in these fields

    The Use of Sentinel-3 Altimetry Data to Assess Wind Speed from the Weather Research and Forecasting (WRF) Model: Application over the Gulf of Cadiz

    Get PDF
    This work presents the quality performance and the capabilities of altimetry derived wind speed (WS) retrievals from the altimeters on-board Copernicus satellites Sentinel-3A/B (S3A/B) for the spatial assessment of WS outputs from the weather research and forecasting (WRF) model over the complex area of the Gulf of Cádiz (GoC), Spain. In order to assess the applicability of the altimetry data for this purpose, comparisons between three different WS data sources over the area were evaluated: in situ measurements, S3A/B 20 Hz altimetry data, and WRF model outputs. Sentinel- 3A/B WS data were compared against two different moored buoys to guarantee the quality of the data over the GoC, resulting in satisfying scores (average results: RMSE = 1.21 m/s, r = 0.93 for S3A and RMSE = 1.36 m/s, r = 0.89 for S3B). Second, the WRF model was validated with in situ data from four different stations to ensure the correct performance over the area. Finally, the spatial variability of the WS derived from the WRF model was compared with the along-track altimetry-derived WS. The analysis was carried out under different wind synoptic conditions. Qualitative and quantitative results (average RMSE < 1.0 m/s) show agreement between both data sets under low/high wind regimes, proving that the spatial coverage of satellite altimetry enables the spatial assessment of high-resolution numerical weather prediction models in complex water-covered zones

    Operational assimilation of ASCAT surface soil wetness at the Met Office

    Get PDF
    Currently, no extensive, near real time, global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) on the meteorological operational (MetOp) satellite contain good quality information about surface soil moisture. This study describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010
    corecore