17,112 research outputs found

    Rule Of Thumb: Deep derotation for improved fingertip detection

    Full text link
    We investigate a novel global orientation regression approach for articulated objects using a deep convolutional neural network. This is integrated with an in-plane image derotation scheme, DeROT, to tackle the problem of per-frame fingertip detection in depth images. The method reduces the complexity of learning in the space of articulated poses which is demonstrated by using two distinct state-of-the-art learning based hand pose estimation methods applied to fingertip detection. Significant classification improvements are shown over the baseline implementation. Our framework involves no tracking, kinematic constraints or explicit prior model of the articulated object in hand. To support our approach we also describe a new pipeline for high accuracy magnetic annotation and labeling of objects imaged by a depth camera.Comment: To be published in proceedings of BMVC 201

    Flight Dynamics-based Recovery of a UAV Trajectory using Ground Cameras

    Get PDF
    We propose a new method to estimate the 6-dof trajectory of a flying object such as a quadrotor UAV within a 3D airspace monitored using multiple fixed ground cameras. It is based on a new structure from motion formulation for the 3D reconstruction of a single moving point with known motion dynamics. Our main contribution is a new bundle adjustment procedure which in addition to optimizing the camera poses, regularizes the point trajectory using a prior based on motion dynamics (or specifically flight dynamics). Furthermore, we can infer the underlying control input sent to the UAV's autopilot that determined its flight trajectory. Our method requires neither perfect single-view tracking nor appearance matching across views. For robustness, we allow the tracker to generate multiple detections per frame in each video. The true detections and the data association across videos is estimated using robust multi-view triangulation and subsequently refined during our bundle adjustment procedure. Quantitative evaluation on simulated data and experiments on real videos from indoor and outdoor scenes demonstrates the effectiveness of our method

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    A Novel Stealthy Target Detection Based on Stratospheric Balloon-borne Positional Instability due to Random Wind

    Get PDF
    A novel detection for stealthy target model F-117A with a higher aspect vision is introduced by using Stratospheric Balloon-borne Bistatic system. The potential problem of proposed scheme is platform instability impacted on the balloon by external wind force. The flight control system is studied in detail under typical random process, which is defined by Dryden turbulence spectrum. To accurately detect the stealthy target model, a real Radar Cross Section (RCS) based on physical optics (PO) formulation is applied. The sensitivity of the proposed scheme has been improved due to increasing PO – scattering field of stealthy model with higher aspect angle comparing to the conventional ground -based system. Simulations demonstrate that the proposed scheme gives much higher location accuracy and reduces location errors

    A Comprehensive Performance Evaluation of Deformable Face Tracking "In-the-Wild"

    Full text link
    Recently, technologies such as face detection, facial landmark localisation and face recognition and verification have matured enough to provide effective and efficient solutions for imagery captured under arbitrary conditions (referred to as "in-the-wild"). This is partially attributed to the fact that comprehensive "in-the-wild" benchmarks have been developed for face detection, landmark localisation and recognition/verification. A very important technology that has not been thoroughly evaluated yet is deformable face tracking "in-the-wild". Until now, the performance has mainly been assessed qualitatively by visually assessing the result of a deformable face tracking technology on short videos. In this paper, we perform the first, to the best of our knowledge, thorough evaluation of state-of-the-art deformable face tracking pipelines using the recently introduced 300VW benchmark. We evaluate many different architectures focusing mainly on the task of on-line deformable face tracking. In particular, we compare the following general strategies: (a) generic face detection plus generic facial landmark localisation, (b) generic model free tracking plus generic facial landmark localisation, as well as (c) hybrid approaches using state-of-the-art face detection, model free tracking and facial landmark localisation technologies. Our evaluation reveals future avenues for further research on the topic.Comment: E. Antonakos and P. Snape contributed equally and have joint second authorshi

    Extracting Tree-structures in CT data by Tracking Multiple Statistically Ranked Hypotheses

    Full text link
    In this work, we adapt a method based on multiple hypothesis tracking (MHT) that has been shown to give state-of-the-art vessel segmentation results in interactive settings, for the purpose of extracting trees. Regularly spaced tubular templates are fit to image data forming local hypotheses. These local hypotheses are used to construct the MHT tree, which is then traversed to make segmentation decisions. However, some critical parameters in this method are scale-dependent and have an adverse effect when tracking structures of varying dimensions. We propose to use statistical ranking of local hypotheses in constructing the MHT tree, which yields a probabilistic interpretation of scores across scales and helps alleviate the scale-dependence of MHT parameters. This enables our method to track trees starting from a single seed point. Our method is evaluated on chest CT data to extract airway trees and coronary arteries. In both cases, we show that our method performs significantly better than the original MHT method.Comment: Accepted for publication at the International Journal of Medical Physics and Practic
    • …
    corecore