11 research outputs found

    Algorithm for Generating All Optimal 16-QAM BI-STCM-ID Labelings

    Get PDF

    Labeling Diversity for 2x2 WLAN Coded-Cooperative Networks

    Get PDF
    Labelling diversity is an efficient technique recently proposed in the literature and aims to improve the bit error rate(BER) performance of wireless local area network (WLAN) systems with two transmit and two receive antennas without increasing the transmit power and bandwidth requirements. In this paper, we employ labelling diversity with different space-time channel codes such as convolutional, turbo and low density parity check (LDPC) for both point-to-point and coded-cooperative communication scenarios. Joint iterative decoding schemes for distributed turbo and LDPC codes are also presented. BER performance bounds at an error floor (EF) region are derived and verified with the help of numerical simulations for both cooperative and non-cooperative schemes. Numerical simulations show that the coded-cooperative schemes with labelling diversity achieve better BER performances and use of labelling diversity at the source node significantly lowers relay outage probability and hence the overall BER performance of the coded-cooperative scheme is improved manifolds

    A new automatic repeat request protocol based on Alamouti space-time block code over Rayleigh fading channels.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Spatial and multiplexing diversity of multiple-input multiple-output (MIMO) schemes improves link reliability and data rates of wireless networks. MIMO-based space-time block codes (STBCs) improve wireless network reliability by using different copies of the receiver’s original data. Recently automatic repeat request (ARQ) technique was introduced for MIMO schemes to enhance the system's link reliability. ARQ improves the link reliability by using acknowledgments and timeouts to ensure efficient transmission of data over an insecure system. In this dissertation, we propose a new ARQ protocol based on Alamouti space-time block code (STBC) over Rayleigh fading channels. The proposed system transmits data by employing two transmit antennas ( ) and four receive antennas , and it is developed by applying the recent technique called uncoded space-time labeling diversity (USTLD). The main idea behind the proposed technique is to use two distinct mappers to improve the error performance of the system. The theoretical expression of the proposed technique is derived employing the union bound approach, and the theoretical analysis is validated with the simulation results. Furthermore, the results revealed that there is a symbol error probability (SEP) performance improvement of 4 dB for 16-QAM and 4.90 dB for 64-QAM when one mapper is employed as compared to the Alamouti system at a SEP of . The results also revealed that when the proposed system uses two mappers, there is a SEP performance improvement of 7.98 dB for 16-QAM and 9.8 dB for 64-QAM compared to the Alamouti system at a SEP of

    Uncoded space-time labeling diversity with three transmit antennas: symbol mapping designs and error performance analysis.

    Get PDF
    Doctoral Degrees. University of KwaZulu-Natal, Durban.Abstract available in PDF.Publications on page iii

    Error performance analysis of cross QAM and space-time labeling diversity for cross QAM.

    Get PDF
    Doctoral Degrees. University of KwaZulu-Natal, Durban.Abstract available in the PD

    Artificial intelligence based design optimization for improving diversity in wireless links.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF

    Uncoded space-time labelling diversity : data rate & reliability enhancements and application to real-world satellite broadcasting.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF

    EXIT charts for system design and analysis

    No full text
    Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes

    Exploiting diversity in wireless channels with bit-interleaved coded modulation and iterative decoding (BICM-ID)

    Get PDF
    This dissertation studies a state-of-the-art bandwidth-efficient coded modulation technique, known as bit interleaved coded modulation with iterative decoding (BICM-ID), together with various diversity techniques to dramatically improve the performance of digital communication systems over wireless channels. For BICM-ID over a single-antenna frequency non-selective fading channel, the problem of mapping over multiple symbols, i.e., multi-dimensional (multi-D) mapping, with 8-PSK constellation is investigated. An explicit algorithm to construct a good multi-D mapping of 8-PSK to improve the asymptotic performance of BICM-ID systems is introduced. By comparing the performance of the proposed mapping with an unachievable lower bound, it is conjectured that the proposed mapping is the global optimal mapping. The superiority of the proposed mapping over the best conventional (1-dimensional complex) mapping and the multi-D mapping found previously by computer search is thoroughly demonstrated. In addition to the mapping issue in single-antenna BICM-ID systems, the use of signal space diversity (SSD), also known as linear constellation precoding (LCP), is considered in BICM-ID over frequency non-selective fading channels. The performance analysis of BICM-ID and complex N-dimensional signal space diversity is carried out to study its performance limitation, the choice of the rotation matrix and the design of a low-complexity receiver. Based on the design criterion obtained from a tight error bound, the optimality of the rotation matrix is established. It is shown that using the class of optimal rotation matrices, the performance of BICM-ID systems over a frequency non-selective Rayleigh fading channel approaches that of the BICM-ID systems over an additive white Gaussian noise (AWGN) channel when the dimension of the signal constellation increases. Furthermore, by exploiting the sigma mapping for any M-ary quadrature amplitude modulation (QAM) constellation, a very simple sub-optimal, yet effective iterative receiver structure suitable for signal constellations with large dimensions is proposed. Simulation results in various cases and conditions indicate that the proposed receiver can achieve the analytical performance bounds with low complexity. The application of BICM-ID with SSD is then extended to the case of cascaded Rayleigh fading, which is more suitable to model mobile-to-mobile communication channels. By deriving the error bound on the asymptotic performance, it is first illustrated that for a small modulation constellation, a cascaded Rayleigh fading causes a much more severe performance degradation than a conventional Rayleigh fading. However, BICM-ID employing SSD with a sufficiently large constellation can close the performance gap between the Rayleigh and cascaded Rayleigh fading channels, and their performance can closely approach that over an AWGN channel. In the next step, the use of SSD in BICM-ID over frequency selective Rayleigh fading channels employing a multi-carrier modulation technique known as orthogonal frequency division multiplexing (OFDM) is studied. Under the assumption of correlated fading over subcarriers, a tight bound on the asymptotic error performance for the general case of applying SSD over all N subcarriers is derived and used to establish the best achievable asymptotic performance by SSD. It is then shown that precoding over subgroups of at least L subcarriers per group, where L is the number of channel taps, is sufficient to obtain this best asymptotic error performance, while significantly reducing the receiver complexity. The optimal joint subcarrier grouping and rotation matrix design is subsequently determined by solving the Vandermonde linear system. Illustrative examples show a good agreement between various analytical and simulation results. Further, by combining the ideas of multi-D mapping and subcarrier grouping, a novel power and bandwidth-efficient bit-interleaved coded modulation with OFDM and iterative decoding (BI-COFDM-ID) in which multi-D mapping is performed over a group of subcarriers for broadband transmission in a frequency selective fading environment is proposed. A tight bound on the asymptotic error performance is developed, which shows that subcarrier mapping and grouping have independent impacts on the overall error performance, and hence they can be independently optimized. Specifically, it is demonstrated that the optimal subcarrier mapping is similar to the optimal multi-D mapping for BICM-ID in frequency non-selective Rayleigh fading environment, whereas the optimal subcarrier grouping is the same with that of OFDM with SSD. Furthermore, analytical and simulation results show that the proposed system with the combined optimal subcarrier mapping and grouping can achieve the full channel diversity without using SSD and provide significant coding gains as compared to the previously studied BI-COFDM-ID with the same power, bandwidth and receiver complexity. Finally, the investigation is extended to the application of BICM-ID over a multiple-input multiple-output (MIMO) system equipped with multiple antennas at both the transmitter and the receiver to exploit both time and spatial diversities, where neither the transmitter nor the receiver knows the channel fading coefficients. The concentration is on the class of unitary constellation, due to its advantages in terms of both information-theoretic capacity and error probability. The tight error bound with respect to the asymptotic performance is also derived for any given unitary constellation and mapping rule. Design criteria regarding the choice of unitary constellation and mapping are then established. Furthermore, by using the unitary constellation obtained from orthogonal design with quadrature phase-shift keying (QPSK or 4-PSK) and 8-PSK, two different mapping rules are proposed. The first mapping rule gives the most suitable mapping for systems that do not implement iterative processing, which is similar to a Gray mapping in coherent channels. The second mapping rule yields the best mapping for systems with iterative decoding. Analytical and simulation results show that with the proposed mappings of the unitary constellations obtained from orthogonal designs, the asymptotic error performance of the iterative systems can closely approach a lower bound which is applicable to any unitary constellation and mapping
    corecore