1,323 research outputs found

    An efficient and versatile approach to trust and reputation using hierarchical Bayesian modelling

    No full text
    In many dynamic open systems, autonomous agents must interact with one another to achieve their goals. Such agents may be self-interested and, when trusted to perform an action, may betray that trust by not performing the action as required. Due to the scale and dynamism of these systems, agents will often need to interact with other agents with which they have little or no past experience. Each agent must therefore be capable of assessing and identifying reliable interaction partners, even if it has no personal experience with them. To this end, we present HABIT, a Hierarchical And Bayesian Inferred Trust model for assessing how much an agent should trust its peers based on direct and third party information. This model is robust in environments in which third party information is malicious, noisy, or otherwise inaccurate. Although existing approaches claim to achieve this, most rely on heuristics with little theoretical foundation. In contrast, HABIT is based exclusively on principled statistical techniques: it can cope with multiple discrete or continuous aspects of trustee behaviour; it does not restrict agents to using a single shared representation of behaviour; it can improve assessment by using any observed correlation between the behaviour of similar trustees or information sources; and it provides a pragmatic solution to the whitewasher problem (in which unreliable agents assume a new identity to avoid bad reputation). In this paper, we describe the theoretical aspects of HABIT, and present experimental results that demonstrate its ability to predict agent behaviour in both a simulated environment, and one based on data from a real-world webserver domain. In particular, these experiments show that HABIT can predict trustee performance based on multiple representations of behaviour, and is up to twice as accurate as BLADE, an existing state-of-the-art trust model that is both statistically principled and has been previously shown to outperform a number of other probabilistic trust models

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Mathematical Modeling of Product Rating: Sufficiency, Misbehavior and Aggregation Rules

    Full text link
    Many web services like eBay, Tripadvisor, Epinions, etc, provide historical product ratings so that users can evaluate the quality of products. Product ratings are important since they affect how well a product will be adopted by the market. The challenge is that we only have {\em "partial information"} on these ratings: Each user provides ratings to only a "{\em small subset of products}". Under this partial information setting, we explore a number of fundamental questions: What is the "{\em minimum number of ratings}" a product needs so one can make a reliable evaluation of its quality? How users' {\em misbehavior} (such as {\em cheating}) in product rating may affect the evaluation result? To answer these questions, we present a formal mathematical model of product evaluation based on partial information. We derive theoretical bounds on the minimum number of ratings needed to produce a reliable indicator of a product's quality. We also extend our model to accommodate users' misbehavior in product rating. We carry out experiments using both synthetic and real-world data (from TripAdvisor, Amazon and eBay) to validate our model, and also show that using the "majority rating rule" to aggregate product ratings, it produces more reliable and robust product evaluation results than the "average rating rule".Comment: 33 page

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Learning to predict closed questions on stack overflow

    Full text link
    The paper deals with the problem of predicting whether the user’s question will be closed by the moderator on Stack Overflow, a popular question answering service devoted to software programming. The task along with data and evaluation metrics was offered as an open machine learning competition on Kaggle platform. To solve this problem, we employed a wide range of classification features related to users, their interactions, and post content. Classification was carried out using several machine learning methods. According to the results of the experiment, the most important features are characteristics of the user and topical features of the question. The best results were obtained using Vowpal Wabbit – an implementation of online learning based on stochastic gradient descent. Our results are among the best ones in overall ranking, although they were obtained after the official competition was over

    Tag-Aware Recommender Systems: A State-of-the-art Survey

    Get PDF
    In the past decade, Social Tagging Systems have attracted increasing attention from both physical and computer science communities. Besides the underlying structure and dynamics of tagging systems, many efforts have been addressed to unify tagging information to reveal user behaviors and preferences, extract the latent semantic relations among items, make recommendations, and so on. Specifically, this article summarizes recent progress about tag-aware recommender systems, emphasizing on the contributions from three mainstream perspectives and approaches: network-based methods, tensor-based methods, and the topic-based methods. Finally, we outline some other tag-related works and future challenges of tag-aware recommendation algorithms.Comment: 19 pages, 3 figure

    Learning domain-specific sentiment lexicons with applications to recommender systems

    Get PDF
    Search is now going beyond looking for factual information, and people wish to search for the opinions of others to help them in their own decision-making. Sentiment expressions or opinion expressions are used by users to express their opinion and embody important pieces of information, particularly in online commerce. The main problem that the present dissertation addresses is how to model text to find meaningful words that express a sentiment. In this context, I investigate the viability of automatically generating a sentiment lexicon for opinion retrieval and sentiment classification applications. For this research objective we propose to capture sentiment words that are derived from online users’ reviews. In this approach, we tackle a major challenge in sentiment analysis which is the detection of words that express subjective preference and domain-specific sentiment words such as jargon. To this aim we present a fully generative method that automatically learns a domain-specific lexicon and is fully independent of external sources. Sentiment lexicons can be applied in a broad set of applications, however popular recommendation algorithms have somehow been disconnected from sentiment analysis. Therefore, we present a study that explores the viability of applying sentiment analysis techniques to infer ratings in a recommendation algorithm. Furthermore, entities’ reputation is intrinsically associated with sentiment words that have a positive or negative relation with those entities. Hence, is provided a study that observes the viability of using a domain-specific lexicon to compute entities reputation. Finally, a recommendation system algorithm is improved with the use of sentiment-based ratings and entities reputation

    A TOPIC SENSITIVE SIMRANK (TSSR) MODEL FOR EXPERTS FINDING ON ONLINE RESEARCH SOCIAL PLATFORMS

    Get PDF
    As an efficient online academic information repository and information channel with crowds’ contribution, online research social platforms have become an efficient tool for various kinds of research & management applications. Social network platforms have also become a major source to seek for field experts. They have advantages of crowd contributions, easy to access without geographic restrictions and avoiding conflict of interests over traditional database and search engine based approaches. However, current research attempts to find experts based on features such as published research work, social relationships, and online behaviours (e.g. reads and downloads of publications) on social platforms, they ignore to verify the reliability of identified experts. To bridge this gap, this research proposes an innovative Topic Sensitive SimRank (TSSR) model to identify “real” experts on social network platforms. TSSR model includes three components: LDA for Expertise Extension, Topic Sensitive Network for Reputation Measurement, and Topic Sensitive SimRank for unsuitable experts detection. We also design a parallel computing strategy to improve the efficiency of the proposed methods. Last, to verify the effectiveness of the proposed model, we design an experiment on one of the research social platforms-ScholarMate to seek for experts for companies that need academic-industry collaboration
    corecore