3,863 research outputs found

    Scene Graph Generation with External Knowledge and Image Reconstruction

    Full text link
    Scene graph generation has received growing attention with the advancements in image understanding tasks such as object detection, attributes and relationship prediction,~\etc. However, existing datasets are biased in terms of object and relationship labels, or often come with noisy and missing annotations, which makes the development of a reliable scene graph prediction model very challenging. In this paper, we propose a novel scene graph generation algorithm with external knowledge and image reconstruction loss to overcome these dataset issues. In particular, we extract commonsense knowledge from the external knowledge base to refine object and phrase features for improving generalizability in scene graph generation. To address the bias of noisy object annotations, we introduce an auxiliary image reconstruction path to regularize the scene graph generation network. Extensive experiments show that our framework can generate better scene graphs, achieving the state-of-the-art performance on two benchmark datasets: Visual Relationship Detection and Visual Genome datasets.Comment: 10 pages, 5 figures, Accepted in CVPR 201

    External query reformulation for text-based image retrieval

    Get PDF
    In text-based image retrieval, the Incomplete Annotation Problem (IAP) can greatly degrade retrieval effectiveness. A standard method used to address this problem is pseudo relevance feedback (PRF) which updates user queries by adding feedback terms selected automatically from top ranked documents in a prior retrieval run. PRF assumes that the target collection provides enough feedback information to select effective expansion terms. This is often not the case in image retrieval since images often only have short metadata annotations leading to the IAP. Our work proposes the use of an external knowledge resource (Wikipedia) in the process of refining user queries. In our method, Wikipedia documents strongly related to the terms in user query (" definition documents") are first identified by title matching between the query and titles of Wikipedia articles. These definition documents are used as indicators to re-weight the feedback documents from an initial search run on a Wikipedia abstract collection using the Jaccard coefficient. The new weights of the feedback documents are combined with the scores rated by different indicators. Query-expansion terms are then selected based on these new weights for the feedback documents. Our method is evaluated on the ImageCLEF WikipediaMM image retrieval task using text-based retrieval on the document metadata fields. The results show significant improvement compared to standard PRF methods

    Using association rule mining to enrich semantic concepts for video retrieval

    Get PDF
    In order to achieve true content-based information retrieval on video we should analyse and index video with high-level semantic concepts in addition to using user-generated tags and structured metadata like title, date, etc. However the range of such high-level semantic concepts, detected either manually or automatically, usually limited compared to the richness of information content in video and the potential vocabulary of available concepts for indexing. Even though there is work to improve the performance of individual concept classifiers, we should strive to make the best use of whatever partial sets of semantic concept occurrences are available to us. We describe in this paper our method for using association rule mining to automatically enrich the representation of video content through a set of semantic concepts based on concept co-occurrence patterns. We describe our experiments on the TRECVid 2005 video corpus annotated with the 449 concepts of the LSCOM ontology. The evaluation of our results shows the usefulness of our approach

    Automatic Query Image Disambiguation for Content-Based Image Retrieval

    Full text link
    Query images presented to content-based image retrieval systems often have various different interpretations, making it difficult to identify the search objective pursued by the user. We propose a technique for overcoming this ambiguity, while keeping the amount of required user interaction at a minimum. To achieve this, the neighborhood of the query image is divided into coherent clusters from which the user may choose the relevant ones. A novel feedback integration technique is then employed to re-rank the entire database with regard to both the user feedback and the original query. We evaluate our approach on the publicly available MIRFLICKR-25K dataset, where it leads to a relative improvement of average precision by 23% over the baseline retrieval, which does not distinguish between different image senses.Comment: VISAPP 2018 paper, 8 pages, 5 figures. Source code: https://github.com/cvjena/ai

    Content-Based Video Retrieval in Historical Collections of the German Broadcasting Archive

    Full text link
    The German Broadcasting Archive (DRA) maintains the cultural heritage of radio and television broadcasts of the former German Democratic Republic (GDR). The uniqueness and importance of the video material stimulates a large scientific interest in the video content. In this paper, we present an automatic video analysis and retrieval system for searching in historical collections of GDR television recordings. It consists of video analysis algorithms for shot boundary detection, concept classification, person recognition, text recognition and similarity search. The performance of the system is evaluated from a technical and an archival perspective on 2,500 hours of GDR television recordings.Comment: TPDL 2016, Hannover, Germany. Final version is available at Springer via DO

    Semantic multimedia modelling & interpretation for annotation

    Get PDF
    The emergence of multimedia enabled devices, particularly the incorporation of cameras in mobile phones, and the accelerated revolutions in the low cost storage devices, boosts the multimedia data production rate drastically. Witnessing such an iniquitousness of digital images and videos, the research community has been projecting the issue of its significant utilization and management. Stored in monumental multimedia corpora, digital data need to be retrieved and organized in an intelligent way, leaning on the rich semantics involved. The utilization of these image and video collections demands proficient image and video annotation and retrieval techniques. Recently, the multimedia research community is progressively veering its emphasis to the personalization of these media. The main impediment in the image and video analysis is the semantic gap, which is the discrepancy among a user’s high-level interpretation of an image and the video and the low level computational interpretation of it. Content-based image and video annotation systems are remarkably susceptible to the semantic gap due to their reliance on low-level visual features for delineating semantically rich image and video contents. However, the fact is that the visual similarity is not semantic similarity, so there is a demand to break through this dilemma through an alternative way. The semantic gap can be narrowed by counting high-level and user-generated information in the annotation. High-level descriptions of images and or videos are more proficient of capturing the semantic meaning of multimedia content, but it is not always applicable to collect this information. It is commonly agreed that the problem of high level semantic annotation of multimedia is still far from being answered. This dissertation puts forward approaches for intelligent multimedia semantic extraction for high level annotation. This dissertation intends to bridge the gap between the visual features and semantics. It proposes a framework for annotation enhancement and refinement for the object/concept annotated images and videos datasets. The entire theme is to first purify the datasets from noisy keyword and then expand the concepts lexically and commonsensical to fill the vocabulary and lexical gap to achieve high level semantics for the corpus. This dissertation also explored a novel approach for high level semantic (HLS) propagation through the images corpora. The HLS propagation takes the advantages of the semantic intensity (SI), which is the concept dominancy factor in the image and annotation based semantic similarity of the images. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other, while semantic similarity of the images are based on the SI and concept semantic similarity among the pair of images. Moreover, the HLS exploits the clustering techniques to group similar images, where a single effort of the human experts to assign high level semantic to a randomly selected image and propagate to other images through clustering. The investigation has been made on the LabelMe image and LabelMe video dataset. Experiments exhibit that the proposed approaches perform a noticeable improvement towards bridging the semantic gap and reveal that our proposed system outperforms the traditional systems

    TagBook: A Semantic Video Representation without Supervision for Event Detection

    Get PDF
    We consider the problem of event detection in video for scenarios where only few, or even zero examples are available for training. For this challenging setting, the prevailing solutions in the literature rely on a semantic video representation obtained from thousands of pre-trained concept detectors. Different from existing work, we propose a new semantic video representation that is based on freely available social tagged videos only, without the need for training any intermediate concept detectors. We introduce a simple algorithm that propagates tags from a video's nearest neighbors, similar in spirit to the ones used for image retrieval, but redesign it for video event detection by including video source set refinement and varying the video tag assignment. We call our approach TagBook and study its construction, descriptiveness and detection performance on the TRECVID 2013 and 2014 multimedia event detection datasets and the Columbia Consumer Video dataset. Despite its simple nature, the proposed TagBook video representation is remarkably effective for few-example and zero-example event detection, even outperforming very recent state-of-the-art alternatives building on supervised representations.Comment: accepted for publication as a regular paper in the IEEE Transactions on Multimedi
    corecore