731 research outputs found

    Transmit Optimization with Improper Gaussian Signaling for Interference Channels

    Full text link
    This paper studies the achievable rates of Gaussian interference channels with additive white Gaussian noise (AWGN), when improper or circularly asymmetric complex Gaussian signaling is applied. For the Gaussian multiple-input multiple-output interference channel (MIMO-IC) with the interference treated as Gaussian noise, we show that the user's achievable rate can be expressed as a summation of the rate achievable by the conventional proper or circularly symmetric complex Gaussian signaling in terms of the users' transmit covariance matrices, and an additional term, which is a function of both the users' transmit covariance and pseudo-covariance matrices. The additional degrees of freedom in the pseudo-covariance matrix, which is conventionally set to be zero for the case of proper Gaussian signaling, provide an opportunity to further improve the achievable rates of Gaussian MIMO-ICs by employing improper Gaussian signaling. To this end, this paper proposes widely linear precoding, which efficiently maps proper information-bearing signals to improper transmitted signals at each transmitter for any given pair of transmit covariance and pseudo-covariance matrices. In particular, for the case of two-user Gaussian single-input single-output interference channel (SISO-IC), we propose a joint covariance and pseudo-covariance optimization algorithm with improper Gaussian signaling to achieve the Pareto-optimal rates. By utilizing the separable structure of the achievable rate expression, an alternative algorithm with separate covariance and pseudo-covariance optimization is also proposed, which guarantees the rate improvement over conventional proper Gaussian signaling.Comment: Accepted by IEEE Transactions on Signal Processin

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe
    corecore