106 research outputs found

    Spectrum Sharing Opportunities of Full-Duplex Systems using Improper Gaussian Signaling

    Full text link
    Sharing the licensed spectrum of full-duplex (FD) primary users (PU) brings strict limitations on the underlay cognitive radio operation. Particularly, the self interference may overwhelm the PU receiver and limit the opportunity of secondary users (SU) to access the spectrum. Improper Gaussian signaling (IGS) has demonstrated its superiority in improving the performance of interference channel systems. Throughout this paper, we assume a FD PU pair that uses proper Gaussian signaling (PGS), and a half-duplex SU pair that uses IGS. The objective is to maximize the SU instantaneous achievable rate while meeting the PU quality-of-service. To this end, we propose a simplified algorithm that optimizes the SU signal parameters, i.e, the transmit power and the circularity coefficient, which is a measure of the degree of impropriety of the SU signal, to achieve the design objective. Numerical results show the merits of adopting IGS compared with PGS for the SU especially with the existence of week PU direct channels and/or strong SU interference channels

    Robust Transceiver Design for IRS-Assisted Cascaded MIMO Systems

    Full text link
    {Robust transceiver design against unresolvable system uncertainties is of crucial importance for reliable communication. We consider a MIMO multi-hop system, where the source, the relay, and the destination are equipped with multiple antennas. Further, an intelligent reconfigurable surface (IRS) is established to cancel the RSI as much as possible. The considered decode-and-forward (DF) hybrid relay can operate in either half-duplex or full-duplex mode, and the mode changes adaptively depending on the RSI strength. We investigate a robust transceiver design problem, which maximizes the throughput rate corresponding to the worst-case RSI under a self-interference channel uncertainty bound constraint. To the best of our knowledge, this is the first work that uses the IRS for RSI cancellation in MIMO full-duplex DF relay systems. The yielded problem turns out to be a non-convex optimization problem, where the non-convex objective is optimized over the cone of semidefinite matrices. We propose a closed-from lower bound for the IRS worst case RSI cancellation. Eventually, we show an important result that, for the worst case scenario, IRS can be helpful only if the number of IRS elements are at least as large as the size of the interference channel. Moreover, a novel method based on majorization theory is proposed to find the best response of the transmitters and relay against worst case RSI. Furthermore, we propose a multi-level water-filling algorithm to obtain a locally optimal solution iteratively. Finally, we obtain insights on the optimal antenna allocation at the relay input-frontend and output-frontend, for relay reception and transmission, respectively.Comment: arXiv admin note: substantial text overlap with arXiv:1912.1283
    • …
    corecore