44 research outputs found

    Improper choosability and Property B

    Full text link
    A fundamental connection between list vertex colourings of graphs and Property B (also known as hypergraph 2-colourability) was already known to Erd\H{o}s, Rubin and Taylor. In this article, we draw similar connections for improper list colourings. This extends results of Kostochka, Alon, and Kr\'al' and Sgall for, respectively, multipartite graphs, graphs of large minimum degree, and list assignments with bounded list union.Comment: 12 page

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Near-colorings: non-colorable graphs and NP-completeness

    Full text link
    A graph G is (d_1,..,d_l)-colorable if the vertex set of G can be partitioned into subsets V_1,..,V_l such that the graph G[V_i] induced by the vertices of V_i has maximum degree at most d_i for all 1 <= i <= l. In this paper, we focus on complexity aspects of such colorings when l=2,3. More precisely, we prove that, for any fixed integers k,j,g with (k,j) distinct form (0,0) and g >= 3, either every planar graph with girth at least g is (k,j)-colorable or it is NP-complete to determine whether a planar graph with girth at least g is (k,j)-colorable. Also, for any fixed integer k, it is NP-complete to determine whether a planar graph that is either (0,0,0)-colorable or non-(k,k,1)-colorable is (0,0,0)-colorable. Additionally, we exhibit non-(3,1)-colorable planar graphs with girth 5 and non-(2,0)-colorable planar graphs with girth 7

    On Two problems of defective choosability

    Full text link
    Given positive integers p≥kp \ge k, and a non-negative integer dd, we say a graph GG is (k,d,p)(k,d,p)-choosable if for every list assignment LL with ∣L(v)∣≥k|L(v)|\geq k for each v∈V(G)v \in V(G) and ∣⋃v∈V(G)L(v)∣≤p|\bigcup_{v\in V(G)}L(v)| \leq p, there exists an LL-coloring of GG such that each monochromatic subgraph has maximum degree at most dd. In particular, (k,0,k)(k,0,k)-choosable means kk-colorable, (k,0,+∞)(k,0,+\infty)-choosable means kk-choosable and (k,d,+∞)(k,d,+\infty)-choosable means dd-defective kk-choosable. This paper proves that there are 1-defective 3-choosable graphs that are not 4-choosable, and for any positive integers ℓ≥k≥3\ell \geq k \geq 3, and non-negative integer dd, there are (k,d,ℓ)(k,d, \ell)-choosable graphs that are not (k,d,ℓ+1)(k,d , \ell+1)-choosable. These results answer questions asked by Wang and Xu [SIAM J. Discrete Math. 27, 4(2013), 2020-2037], and Kang [J. Graph Theory 73, 3(2013), 342-353], respectively. Our construction of (k,d,ℓ)(k,d, \ell)-choosable but not (k,d,ℓ+1)(k,d , \ell+1)-choosable graphs generalizes the construction of Kr\'{a}l' and Sgall in [J. Graph Theory 49, 3(2005), 177-186] for the case d=0d=0.Comment: 12 pages, 4 figure
    corecore