961 research outputs found

    Ranking Methods for Global Optimization of Molecular Structures

    Get PDF
    This work presents heuristics for searching large sets of molecular structures for low-energy, stable systems. The goal is to find the globally optimal structures in less time or by consuming less computational resources. The strategies intermittently evaluate and rank structures during molecular dynamics optimizations, culling possible weaker solutions from evaluations earlier, leaving better solutions to receive more simulation time. Although some imprecision was introduced from not allowing all structures to fully optimize before ranking, the strategies identify metrics that can be used to make these searches more efficient when computational resources are limited

    Feature Selection for Fuzzy Models

    Get PDF

    Design and implementation of evolutionary computation algorithms for volunteer compute networks

    Get PDF
    Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, June 2014.Cataloged from PDF version of thesis. "May 23, 2014."Includes bibliographical references (page 37).We implemented a distributed evolutionary computation system titled EvoGPJ Star (EGS) and deployed the system onto Boinc, a volunteer computing network (VCN). Evolutionary computation is computationally expensive and VCN allows more cost-effective cluster computing since resources are donated. In addition, we believe that the design similarities between EGS and our chosen VCN (Boinc) would allow for easy integration of the two systems. EGS follows a centralized design pattern, with multiple engines communicating with a central coordinator and case server. The coordinator synchronizes up engines to run experiments and also stores and distributes individual solutions among engines. The engine-coordinator model creates a scalable (engines can be easily added) and robust (can continue to operate if nodes fail) system. For our experiment we chose rule-based classification. We saw the distributed EGS solutions (standard and Boinc) outperform the single-engine system. Deploying the system to Boinc revealed some design conflicts between Boinc and EGS experimentation. These conflicts stemmed from the asynchronous and asymmetric nature of VCNs.by Otitochi Mbagwu.M. Eng

    PSA 2016

    Get PDF
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2016

    Evolutionary Strategies for Data Mining

    Get PDF
    Learning classifier systems (LCS) have been successful in generating rules for solving classification problems in data mining. The rules are of the form IF condition THEN action. The condition encodes the features of the input space and the action encodes the class label. What is lacking in those systems is the ability to express each feature using a function that is appropriate for that feature. The genetic algorithm is capable of doing this but cannot because only one type of membership function is provided. Thus, the genetic algorithm learns only the shape and placement of the membership function, and in some cases, the number of partitions generated by this function. The research conducted in this study employs a learning classifier system to generate the rules for solving classification problems, but also incorporates multiple types of membership functions, allowing the genetic algorithm to choose an appropriate one for each feature of the input space and determine the number of partitions generated by each function. In addition, three membership functions were introduced. This paper describes the framework and implementation of this modified learning classifier system (M-LCS). Using the M-LCS model, classifiers were simulated for two benchmark classification problems and two additional real-world problems. The results of these four simulations indicate that the M-LCS model provides an alternative approach to designing a learning classifier system. The following contributions are made to the field of computing: 1) a framework for developing a learning classifier system that employs multiple types of membership functions, 2) a model, M-LCS, that was developed from the framework, and 3) the addition of three membership functions that have not been used in the design of learning classifier systems

    Multiobjective Optimization of Fuzzy System for Cardiovascular Risk Classification

    Get PDF
    Dado que las enfermedades cardiovasculares (ECV) plantean una preocupación mundial crítica, la identificación de los factores de riesgo asociados sigue siendo un foco de investigación fundamental. Este estudio tiene como objetivo proponer y optimizar un sistema difuso para la clasificación del riesgo cardiovascular (RCV) utilizando un enfoque multiobjetivo, abordando aspectos computacionales como la configuración del sistema difuso, el proceso de optimización, la selección de una solución adecuada a partir del frente de Pareto óptimo, y la interpretabilidad del sistema de lógica difusa después del proceso de optimización. El sistema propuesto utiliza datos, incluida la edad, el peso, la altura, el sexo y la presión arterial sistólica para determinar el riesgo cardiovascular. El modelo difuso se basa en información preliminar de la literatura; por lo tanto, para ajustar el sistema de lógica difusa utilizando un enfoque multiobjetivo, el índice de masa corporal (IMC) se considera como un resultado adicional ya que hay datos disponibles para este índice, y el índice de masa corporal se reconoce como un indicador aproximado del riesgo cardiovascular dada la propensión a sufrir enfermedades cardiovasculares. Estas enfermedades se atribuyen al exceso de tejido adiposo, que puede elevar la presión arterial, los niveles de colesterol y triglicéridos, provocando daño arterial y cardíaco. Al emplear un enfoque multiobjetivo, el estudio pretende obtener un equilibrio entre los dos resultados correspondientes a la clasificación de riesgo cardiovascular y el índice de masa corporal. Para la optimización multiobjetivo se propone un conjunto de experimentos que arrojan como resultado un frente de Pareto óptimo para posteriormente determinar la solución adecuada. Los resultados muestran una adecuada optimización del sistema de lógica difusa, permitiendo la interpretabilidad de los conjuntos difusos luego de realizar el proceso de optimización. De esta manera, este artículo contribuye al avance del uso de técnicas computacionales en el ámbito médico.Since cardiovascular diseases (CVDs) pose a critical global concern, identifying associated risk factors remains a pivotal research focus. This study aims to propose and optimize a fuzzy system for cardiovascular risk (CVR) classification using a multiobjective approach, addressing computational aspects such as the configuration of the fuzzy system, the optimization process, the selection of a suitable solution from the optimal Pareto front, and the interpretability of the fuzzy logic system after the optimization process. The proposed system utilizes data, including age, weight, height, gender, and systolic blood pressure to determine cardiovascular risk. The fuzzy model is based on preliminary information from the literature; therefore, to adjust the fuzzy logic system using a multiobjective approach, the body mass index (BMI) is considered as an additional output as data are available for this index, and body mass index is acknowledged as a proxy for cardiovascular risk given the propensity for these diseases attributed to surplus adipose tissue, which can elevate blood pressure, cholesterol, and triglyceride levels, leading to arterial and cardiac damage. By employing a multiobjective approach, the study aims to obtain a balance between the two outputs corresponding to cardiovascular risk classification and body mass index. For the multiobjective optimization, a set of experiments is proposed that render an optimal Pareto front, as a result, to later determine the appropriate solution. The results show an adequate optimization of the fuzzy logic system, allowing the interpretability of the fuzzy sets after carrying out the optimization process. In this way, this paper contributes to the advancement of the use of computational techniques in the medical domain

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Coevolutionary fuzzy modeling

    Get PDF
    This thesis presents Fuzzy CoCo, a novel approach for system design, conducive to explaining human decisions. Based on fuzzy logic and coevolutionary computation, Fuzzy CoCo is a methodology for constructing systems able to accurately predict the outcome of a human decision-making process, while providing an understandable explanation of the underlying reasoning. Fuzzy logic provides a formal framework for constructing systems exhibiting both good numeric performance (precision) and linguistic representation (interpretability). From a numeric point of view, fuzzy systems exhibit nonlinear behavior and can handle imprecise and incomplete information. Linguistically, they represent knowledge in the form of rules, a natural way for explaining decision processes. Fuzzy modeling —meaning the construction of fuzzy systems— is an arduous task, demanding the identification of many parameters. This thesis analyses the fuzzy-modeling problem and different approaches to coping with it, focusing on evolutionary fuzzy modeling —the design of fuzzy inference systems using evolutionary algorithms— which constitutes the methodological base of my approach. In order to promote this analysis the parameters of a fuzzy system are classified into four categories: logic, structural, connective, and operational. The central contribution of this work is the use of an advanced evolutionary technique —cooperative coevolution— for dealing with the simultaneous design of connective and operational parameters. Cooperative coevolutionary fuzzy modeling succeeds in overcoming several limitations exhibited by other standard evolutionary approaches: stagnation, convergence to local optima, and computational costliness. Designing interpretable systems is a prime goal of my approach, which I study thoroughly herein. Based on a set of semantic and syntactic criteria, regarding the definition of linguistic concepts and their causal connections, I propose a number of strategies for producing more interpretable fuzzy systems. These strategies are implemented in Fuzzy CoCo, resulting in a modeling methodology providing high numeric precision, while incurring as little a loss of interpretability as possible. After testing Fuzzy CoCo on a benchmark problem —Fisher's Iris data— I successfully apply the algorithm to model the decision processes involved in two breast-cancer diagnostic problems: the WBCD problem and the Catalonia mammography interpretation problem. For the WBCD problem, Fuzzy CoCo produces systems both of high performance and high interpretability, comparable (if not better) than the best systems demonstrated to date. For the Catalonia problem, an evolved high-performance system was embedded within a web-based tool —called COBRA— for aiding radiologists in mammography interpretation. Several aspects of Fuzzy CoCo are thoroughly analyzed to provide a deeper understanding of the method. These analyses show the consistency of the results. They also help derive a stepwise guide to applying Fuzzy CoCo, and a set of qualitative relationships between some of its parameters that facilitate setting up the algorithm. Finally, this work proposes and explores preliminarily two extensions to the method: Island Fuzzy CoCo and Incremental Fuzzy CoCo, which together with the original CoCo constitute a family of coevolutionary fuzzy modeling techniques. The aim of these extensions is to guide the choice of an adequate number of rules for a given problem. While Island Fuzzy CoCo performs an extended search over different problem sizes, Incremental Fuzzy CoCo bases its search power on a mechanism of incremental evolution

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore