14,291 research outputs found

    Voronoi-Based Region Approximation for Geographical Information Retrieval with Gazetteers

    No full text
    Gazetteers and geographical thesauri can be regarded as parsimonious spatial models that associate geographical location with place names and encode some semantic relations between the names. They are of particular value in processing information retrieval requests in which the user employs place names to specify geographical context. Typically the geometric locational data in a gazetteer are confined to a simple footprint in the form of a centroid or a minimum bounding rectangle, both of which can be used to link to a map but are of limited value in determining spatial relationships. Here we describe a Voronoi diagram method for generating approximate regional extents from sets of centroids that are respectively inside and external to a region. The resulting approximations provide measures of areal extent and can be used to assist in answering geographical queries by evaluating spatial relationships such as distance, direction and common boundary length. Preliminary experimental evaluations of the method have been performed in the context of a semantic modelling system that combines the centroid data with hierarchical and adjacency relations between the associated place names

    Mining topological relations from the web

    Get PDF
    Topological relations between geographic regions are of interest in many applications. When the exact boundaries of regions are not available, such relations can be established by analysing natural language information from web documents. In particular we demonstrate how redundancy-based techniques can be used to acquire containment and adjacency relations, and how fuzzy spatial reasoning can be employed to maintain the consistency of the resulting knowledge base

    Reasoning with Mixed Qualitative-Quantitative Representations of Spatial Knowledge

    Get PDF
    Drastic transformations in human settlements are caused by extreme events. As a consequence, descriptions of an environment struck by an extreme event, based on spatial data collected before the event, become suddenly unreliable. On the other hand, time critical actions taken for responding to extreme events require up-to-date spatial information. Traditional methods for spatial data collection are not able to provide updated information rapidly enough, calling for the development of new data collection methods. Reports provided by actors involved in the response operations can be considered as an alternative source of spatial information. Indeed, reports often convey spatial descriptions of the environment. The extraction of spatial descriptions from such reports can serve a fundamental role to update existing information which is usually maintained within, and by means of, Geographic Information Systems. However, spatial information conveyed by human reports has qualitative characteristics, that strongly differ from the quantitative nature of spatial information stored in Geographic Information Systems. Methodologies for integrating qualitative and quantitative spatial information are required in order to exploit human reports for updating existing descriptions of spatial knowledge. Although a significant amount of research has been carried on how to represent and reason on qualitative data and qualitative information, relatively little work exists on developing techniques to combine the different methodologies. The work presented in this thesis extends previous works by introducing a hybrid reasoning system--able to deal with mixed qualitative-quantitative representations of spatial knowledge--combining techniques developed separately for qualitative spatial reasoning and quantitative data analysis. The system produces descriptions of the spatial extent of those entities that have been modified by the event (such as collapsed buildings), or that were not existing before the event (such as fire or ash clouds). Furthermore, qualitative descriptions are produced for all entities in the environment. The former descriptions allow for overlaying on a map the information interpreted from human reports, while the latter triggers warning messages to people involved in decision making operations. Three main system functionalities are investigated in this work: The first allows for translating qualitative information into quantitative descriptions. The second aims at translating quantitative information into qualitative relations. Finally, the third allows for performing inference operations with information given partly qualitatively and partly quantitatively for boosting the spatial knowledge the system is able to produce

    A two-step fusion process for multi-criteria decision applied to natural hazards in mountains

    Get PDF
    Mountain river torrents and snow avalanches generate human and material damages with dramatic consequences. Knowledge about natural phenomenona is often lacking and expertise is required for decision and risk management purposes using multi-disciplinary quantitative or qualitative approaches. Expertise is considered as a decision process based on imperfect information coming from more or less reliable and conflicting sources. A methodology mixing the Analytic Hierarchy Process (AHP), a multi-criteria aid-decision method, and information fusion using Belief Function Theory is described. Fuzzy Sets and Possibilities theories allow to transform quantitative and qualitative criteria into a common frame of discernment for decision in Dempster-Shafer Theory (DST ) and Dezert-Smarandache Theory (DSmT) contexts. Main issues consist in basic belief assignments elicitation, conflict identification and management, fusion rule choices, results validation but also in specific needs to make a difference between importance and reliability and uncertainty in the fusion process

    Using patterns in the automatic marking of ER-Diagrams

    Get PDF
    This paper illustrates how the notion of pattern can be used in the automatic analysis and synthesis of diagrams, applied particularly to the automatic marking of ER-diagrams. The paper describes how diagram patterns fit into a general framework for diagram interpretation and provides examples of how patterns can be exploited in other fields. Diagram patterns are defined and specified within the area of ER-diagrams. The paper also shows how patterns are being exploited in a revision tool for understanding ER-diagrams

    Experiments in the automatic marking of ER-Diagrams

    Get PDF
    In this paper we present an approach to the computer understanding of diagrams and show how it can be successfully applied to the automatic marking (grading) of student attempts at drawing entity-relationship (ER) diagrams. The automatic marker has been incorporated into a revision tool to enable students to practice diagramming and obtain feedback on their attempts

    Reasoning with Mixed Qualitative-Quantitative Representations of Spatial Knowledge

    Get PDF
    Drastic transformations in human settlements are caused by extreme events. As a consequence, descriptions of an environment struck by an extreme event, based on spatial data collected before the event, become suddenly unreliable. On the other hand, time critical actions taken for responding to extreme events require up-to-date spatial information. Traditional methods for spatial data collection are not able to provide updated information rapidly enough, calling for the development of new data collection methods. Reports provided by actors involved in the response operations can be considered as an alternative source of spatial information. Indeed, reports often convey spatial descriptions of the environment. The extraction of spatial descriptions from such reports can serve a fundamental role to update existing information which is usually maintained within, and by means of, Geographic Information Systems. However, spatial information conveyed by human reports has qualitative characteristics, that strongly differ from the quantitative nature of spatial information stored in Geographic Information Systems. Methodologies for integrating qualitative and quantitative spatial information are required in order to exploit human reports for updating existing descriptions of spatial knowledge. Although a significant amount of research has been carried on how to represent and reason on qualitative data and qualitative information, relatively little work exists on developing techniques to combine the different methodologies. The work presented in this thesis extends previous works by introducing a hybrid reasoning system--able to deal with mixed qualitative-quantitative representations of spatial knowledge--combining techniques developed separately for qualitative spatial reasoning and quantitative data analysis. The system produces descriptions of the spatial extent of those entities that have been modified by the event (such as collapsed buildings), or that were not existing before the event (such as fire or ash clouds). Furthermore, qualitative descriptions are produced for all entities in the environment. The former descriptions allow for overlaying on a map the information interpreted from human reports, while the latter triggers warning messages to people involved in decision making operations. Three main system functionalities are investigated in this work: The first allows for translating qualitative information into quantitative descriptions. The second aims at translating quantitative information into qualitative relations. Finally, the third allows for performing inference operations with information given partly qualitatively and partly quantitatively for boosting the spatial knowledge the system is able to produce

    A semantic and language-based representation of an environmental scene

    Get PDF
    The modeling of a landscape environment is a cognitive activity that requires appropriate spatial representations. The research presented in this paper introduces a structural and semantic categorization of a landscape view based on panoramic photographs that act as a substitute of a given natural environment. Verbal descriptions of a landscape scene provide themodeling input of our approach. This structure-based model identifies the spatial, relational, and semantic constructs that emerge from these descriptions. Concepts in the environment are qualified according to a semantic classification, their proximity and direction to the observer, and the spatial relations that qualify them. The resulting model is represented in a way that constitutes a modeling support for the study of environmental scenes, and a contribution for further research oriented to the mapping of a verbal description onto a geographical information system-based representation
    • …
    corecore