367 research outputs found

    Impossible Differential Cryptanalysis of SPN Ciphers

    Get PDF
    Impossible differential cryptanalysis is a very popular tool for analyzing the security of modern block ciphers and the core of such attack is based on the existence of impossible differentials. Currently, most methods for finding impossible differentials are based on the miss-in-the-middle technique and they are very ad-hoc. In this paper, we concentrate SPN ciphers whose diffusion layer is defined by a linear transformation PP. Based on the theory of linear algebra, we propose several criteria on PP and its inversion P−1P^{-1} to characterize the existence of 3/43/4-round impossible differentials. We further discuss the possibility to extend these methods to analyze 5/65/6-round impossible differentials. Using these criteria, impossible differentials for reduced-round Rijndael are found that are consistent with the ones found before. New 44-round impossible differentials are discovered for block cipher ARIA. And many 44-round impossible differentials are firstly detected for a kind of SPN cipher that employs a 32×3232\times32 binary matrix proposed at ICISC 2006 as its diffusion layer. It is concluded that the linear transformation should be carefully designed in order to protect the cipher against impossible differential cryptanalysis

    A Survey of ARX-based Symmetric-key Primitives

    Get PDF
    Addition Rotation XOR is suitable for fast implementation symmetric –key primitives, such as stream and block ciphers. This paper presents a review of several block and stream ciphers based on ARX construction followed by the discussion on the security analysis of symmetric key primitives where the best attack for every cipher was carried out. We benchmark the implementation on software and hardware according to the evaluation metrics. Therefore, this paper aims at providing a reference for a better selection of ARX design strategy

    Differential cryptanalysis of substitution permutation networks and Rijndael-like ciphers

    Get PDF
    A block cipher, in general, consist of several repetitions of a round transformation. A round transformation is a weak block cipher which consists of a nonlinear substitution transformation, a linear diffusion transformation and a key mixing. Differential cryptanalysis is a well known chosen plaintext attack on block ciphers. In this project, differential cryptanalysis is performed on two kinds of block ciphers: Substitution Permutation Networks(SPN) and Rijndael-like Ciphers. In order to strengthen a block cipher against differential attack, care should be taken in the design of both substitution and diffusion components and in the choice of number of rounds. In this context, most of the researches has been focused on the design of substitution component. In this project, differential cryptanalysis is carried out on several SPNs to find the role of permutation. Differential analysis on Rijndael-like ciphers is done to find the strength of the cipher as a whole. Tools are developed to configure and to perform differential analysis on these ciphers. In the context of SPN, the importance of permutation, the effect of bad permutation, no permutation and sequentially chosen plaintext pairs are discussed. The diffusion strength of SPN and Rijndael-like ciphers are discussed and compared

    Mind the Gap - A Closer Look at the Security of Block Ciphers against Differential Cryptanalysis

    Get PDF
    Resistance against differential cryptanalysis is an important design criteria for any modern block cipher and most designs rely on finding some upper bound on probability of single differential characteristics. However, already at EUROCRYPT'91, Lai et al. comprehended that differential cryptanalysis rather uses differentials instead of single characteristics. In this paper, we consider exactly the gap between these two approaches and investigate this gap in the context of recent lightweight cryptographic primitives. This shows that for many recent designs like Midori, Skinny or Sparx one has to be careful as bounds from counting the number of active S-boxes only give an inaccurate evaluation of the best differential distinguishers. For several designs we found new differential distinguishers and show how this gap evolves. We found an 8-round differential distinguisher for Skinny-64 with a probability of 2−56.932−56.93, while the best single characteristic only suggests a probability of 2−722−72. Our approach is integrated into publicly available tools and can easily be used when developing new cryptographic primitives. Moreover, as differential cryptanalysis is critically dependent on the distribution over the keys for the probability of differentials, we provide experiments for some of these new differentials found, in order to confirm that our estimates for the probability are correct. While for Skinny-64 the distribution over the keys follows a Poisson distribution, as one would expect, we noticed that Speck-64 follows a bimodal distribution, and the distribution of Midori-64 suggests a large class of weak keys

    Symmetric block ciphers with a block length of 32 bit

    Get PDF
    Subject of the thesis at hand is the analysis of symmetric block ciphers with a block length of 32 bit. It is meant to give a comprising overview over the topic of 32 bit block ciphers. The topic is divided in the examination of three questions. It contains a list of state of the art block ciphers with a block length of 32 bit. The block ciphers are being described, focussing on the encryption function. An SPN-based cipher with 32 bit block length is being proposed by rescaling the AES cipher. The 32 bit block length results in certain security issues. These so called risk factors are analysed and mitigating measures are proposed. The result of the thesis is, that 32 bit block ciphers can be implemented in a secure manner. The use of 32 bit ciphers should be limited to specific use-cases and with a profound risk analysis, to determine the protection class of the data to be encrypted
    • …
    corecore