545,267 research outputs found

    Design of feedback controllers for paraplegic standing

    Get PDF
    The development, implementation and experimental evaluation of feedback systems for the control of the upright posture of paraplegic persons in standing is described. While the subject stands in a special apparatus, stabilising torque at the ankle joint is generated by electrical stimulation of the paralysed calf muscles of both legs using surface electrodes. This allows the subject to stand without the need to hold on to external supports for stability- this is termed 'unsupported standing'. Sensors in the apparatus allow independent measurement of left and right ankle moments together with measurement of the inclination angle. A nested loop structure for control of standing is implemented, where a high-bandwidth inner loop provides control of the ankle moments, while the angle controller in the outer loop regulates the inclination angle. A number of important modifications to a control strategy which was previously tested with both neurologically intact and paraplegic subjects are presented. The new strategy is described, and an experimental evaluation with intact subjects is reported. The experimental results show that the control system for unsupported standing performs reliably, and according to the design formulation. There aa-e a number of design choices, appropriate to different situations, and the practical effect of each is clear. This allows easy 'tuning' during an experimental session. This is important since the complete design procedure, from muscle dynamics identification to control design, has to be carried out as quickly as possible while the subject is standing in the apparatus. A number of recommendations are made regarding the preferred design choices for control of unsupported standing

    Satellite communication performance evaluation: Computational techniques based on moments

    Get PDF
    Computational techniques that efficiently compute bit error probabilities when only moments of the various interference random variables are available are presented. The approach taken is a generalization of the well known Gauss-Quadrature rules used for numerically evaluating single or multiple integrals. In what follows, basic algorithms are developed. Some of its properties and generalizations are shown and its many potential applications are described. Some typical interference scenarios for which the results are particularly applicable include: intentional jamming, adjacent and cochannel interferences; radar pulses (RFI); multipath; and intersymbol interference. While the examples presented stress evaluation of bit error probilities in uncoded digital communication systems, the moment techniques can also be applied to the evaluation of other parameters, such as computational cutoff rate under both normal and mismatched receiver cases in coded systems. Another important application is the determination of the probability distributions of the output of a discrete time dynamical system. This type of model occurs widely in control systems, queueing systems, and synchronization systems (e.g., discrete phase locked loops)

    Experimental testing of tape springs folded in three dimensions

    No full text
    One of the main drivers in satellite design is the minimization of mass, in the attempt to reduce the large costs involved in the launch of the spacecraft. However, the recent advances in micro electro mechanical systems (MEMS) have allowed a further reduction in the mass of on-board equipment. With advances in micro ion propulsion systems for attitude control, and the miniaturisation of ground based mobile communications, the satellite power requirement does not reduce linearly with mass. This creates the need for photovoltaic cell areas larger than the surface area of the satellite bus. Therefore small satellite deployable structures become increasingly important. The major design requirements for such systems are reliability and low cost. The simpler the components of the system are (i.e. the minimum number of moving parts, lubrication etc), the more chance of the system meeting the design requirements. For this reason, there has been significant investigation into the deployment dynamics of tape springs folded in two dimensions, to form simple hinges which do not require lubrication and automatically locks in the deployed configuration. The present work focuses on using tapes springs to support a new conceptual area deployment design for nano/micro satellites. The deployment of this design incorporates bi-axial folding, which requires the tape springs to unfold in three dimensions. Little research has been carried out in this area. The design of a test rig to determine the properties of this three dimensional deployment is presented in detail. This rig measures both the bending and twisting moments produced from the three- dimensional fold. The combination of these two moments defines the main deployment properties of the tape springs and hence the final array. The experimental results will be compared to theoretical results produced using shell theory and non- linear, finite element analysis

    Modeling and System Identification of the muFly Micro Helicopter

    Get PDF
    An accurate mathematical model is indispensable for simulation and control of a micro helicopter. The nonlinear model in this work is based on the rigid body motion where all external forces and moments as well as the dynamics of the different hardware elements are discussed and derived in detail. The important model parameters are estimated, measured or identified in an identification process. While most parameters are identified from test bench measurements, the remaining ones are identified on subsystems using the linear prediction error method on real flight data. The good results allow to use the systems for the attitude and altitude controller desig

    Performance Measurement System Based on Process Approach

    Get PDF
    This paper addresses issues met when designing, implementing, using and continuously updating performance measurement system based on process approach. Process approach in managing is necessary since it provides a new perspective to the company’s management in terms of identifying problematic, inefficient processes and activities that have negative impact on the overall efficiency and competitive position of the company. Such business management which includes adoption and implementation of the process approach requires consideration of the issues related to performance measurement system based on business process approach as a key control and management instrument. Therefore, the aim of this paper is to shed light on the key moments in the design and implementation of the performance measurement systems in a process-oriented company. In order to look at the above mentioned issues, the attention is given to the important moments and phases in developing a system to measure the performance characteristics of the business processes in a process-oriented company

    Leptin in early life: A key factor for the development of the adult metabolic profile

    Full text link
    Leptin levels during the perinatal period are important for the development of metabolic systems involved in energy homeostasis. In rodents, there is a postnatal leptin surge, with circulating leptin levels increasing around postnatal day (PND) 5 and peaking between PND 9 and PND 10. At this time circulating leptin acts as an important trophic factor for the development of hypothalamic circuits that control energy homeostasis and food seeking and reward behaviors. Blunting the postnatal leptin surge results in long-term leptin insensitivity and increased susceptibility to diet-induced obesity during adulthood. Pharmacologically increased leptin levels in the postnatal period also have long-term effects on metabolism. Nevertheless, this effect is controversial as postnatal hyperleptinemia is reported to both increase and decrease the predisposition to obesity in adulthood. The different effects reported in the literature could be explained by the different moments at which this hormone was administered, suggesting that modifications of the neonatal leptin surge at specific time points could selectively affect the development of central and peripheral systems that are undergoing modifications at this moment resulting in different metabolic and behavioral outcomes. In addition, maternal nutrition and the hormonal environment during pregnancy and lactation may also modulate the offspring’s response to postnatal modifications in leptin levels. This review highlights the importance of leptin levels during the perinatal period in the development of metabolic systems that control energy homeostasis and how modifications of these levels may induce long-lasting and potentially irreversible effects on metabolis

    Effective Statistical Control Strategies for Complex Turbulent Dynamical Systems

    Full text link
    Control of complex turbulent dynamical systems involving strong nonlinearity and high degrees of internal instability is an important topic in practice. Different from traditional methods for controlling individual trajectories, controlling the statistical features of a turbulent system offers a more robust and efficient approach. Crude first-order linear response approximations were typically employed in previous works for statistical control with small initial perturbations. This paper aims to develop two new statistical control strategies for scenarios with more significant initial perturbations and stronger nonlinear responses, allowing the statistical control framework to be applied to a much wider range of problems. First, higher-order methods, incorporating the second-order terms, are developed to resolve the full control-forcing relation. The corresponding changes to recovering the forcing perturbation effectively improve the performance of the statistical control strategy. Second, a mean closure model for the mean response is developed, which is based on the explicit mean dynamics given by the underlying turbulent dynamical system. The dependence of the mean dynamics on higher-order moments is closed using linear response theory but for the response of the second-order moments to the forcing perturbation rather than the mean response directly. The performance of these methods is evaluated extensively on prototype nonlinear test models, which exhibit crucial turbulent features, including non-Gaussian statistics and regime switching with large initial perturbations. The numerical results illustrate the feasibility of different approaches due to their physical and statistical structures and provide detailed guidelines for choosing the most suitable method based on the model properties

    PMU-Based Adaptive Central Protection Unit (CPU) for Power Systems with High DG Penetration

    Get PDF
    The rapid expansion and integration of Distributed Generations (DG) into power systems plays an increasingly important role in their planning, operation, and control. The rules used to design and operate current systems are being altered by the DGs incorporation. This may jeopardize the system\u27s reliability and security. Private owners of large DGs should not be restricted to a particular time schedule to connect/disconnect their generation to/from the system. This feature dynamically changes the typical power system with unidirectional power flow from generation to the loads. A smart Central Protection Unit (CPU) is needed to take proper measures in case of DGs arbitrarily disconnection, isolation or any other type of fault. On the other hand, recent major blackouts resulting from pushing the power systems to the edge has revealed the need for a smarter supervisory system for enhanced reliability and stability. Hence, there is a high demand for a robust and smart supervisory system which can diagnose power systems disturbances in real-time and prevent aggravation and expansion.This thesis is focused on studying the impacts of DG integration on the power systems. Phasor Measurement Units (PMUs) play an important role on the monitoring of power systems. Multiple major data analysis techniques including K-means, Smart K-means clustering, and DBSCAN clustering of the PMU output data have been implemented. Higher order moments of Kurtosis and Skewness indices were also employed in order to estimate the system state
    • …
    corecore