138,358 research outputs found

    Semiparametric Cross Entropy for rare-event simulation

    Full text link
    The Cross Entropy method is a well-known adaptive importance sampling method for rare-event probability estimation, which requires estimating an optimal importance sampling density within a parametric class. In this article we estimate an optimal importance sampling density within a wider semiparametric class of distributions. We show that this semiparametric version of the Cross Entropy method frequently yields efficient estimators. We illustrate the excellent practical performance of the method with numerical experiments and show that for the problems we consider it typically outperforms alternative schemes by orders of magnitude

    Computationally Efficient Nonparametric Importance Sampling

    Full text link
    The variance reduction established by importance sampling strongly depends on the choice of the importance sampling distribution. A good choice is often hard to achieve especially for high-dimensional integration problems. Nonparametric estimation of the optimal importance sampling distribution (known as nonparametric importance sampling) is a reasonable alternative to parametric approaches.In this article nonparametric variants of both the self-normalized and the unnormalized importance sampling estimator are proposed and investigated. A common critique on nonparametric importance sampling is the increased computational burden compared to parametric methods. We solve this problem to a large degree by utilizing the linear blend frequency polygon estimator instead of a kernel estimator. Mean square error convergence properties are investigated leading to recommendations for the efficient application of nonparametric importance sampling. Particularly, we show that nonparametric importance sampling asymptotically attains optimal importance sampling variance. The efficiency of nonparametric importance sampling algorithms heavily relies on the computational efficiency of the employed nonparametric estimator. The linear blend frequency polygon outperforms kernel estimators in terms of certain criteria such as efficient sampling and evaluation. Furthermore, it is compatible with the inversion method for sample generation. This allows to combine our algorithms with other variance reduction techniques such as stratified sampling. Empirical evidence for the usefulness of the suggested algorithms is obtained by means of three benchmark integration problems. As an application we estimate the distribution of the queue length of a spam filter queueing system based on real data.Comment: 29 pages, 7 figure

    Importance Sampling and its Optimality for Stochastic Simulation Models

    Full text link
    We consider the problem of estimating an expected outcome from a stochastic simulation model. Our goal is to develop a theoretical framework on importance sampling for such estimation. By investigating the variance of an importance sampling estimator, we propose a two-stage procedure that involves a regression stage and a sampling stage to construct the final estimator. We introduce a parametric and a nonparametric regression estimator in the first stage and study how the allocation between the two stages affects the performance of the final estimator. We analyze the variance reduction rates and derive oracle properties of both methods. We evaluate the empirical performances of the methods using two numerical examples and a case study on wind turbine reliability evaluation.Comment: 37 pages, 6 figures, 2 tables. Accepted to the Electronic Journal of Statistic

    Computational aspects of Bayesian spectral density estimation

    Full text link
    Gaussian time-series models are often specified through their spectral density. Such models present several computational challenges, in particular because of the non-sparse nature of the covariance matrix. We derive a fast approximation of the likelihood for such models. We propose to sample from the approximate posterior (that is, the prior times the approximate likelihood), and then to recover the exact posterior through importance sampling. We show that the variance of the importance sampling weights vanishes as the sample size goes to infinity. We explain why the approximate posterior may typically multi-modal, and we derive a Sequential Monte Carlo sampler based on an annealing sequence in order to sample from that target distribution. Performance of the overall approach is evaluated on simulated and real datasets. In addition, for one real world dataset, we provide some numerical evidence that a Bayesian approach to semi-parametric estimation of spectral density may provide more reasonable results than its Frequentist counter-parts

    Estimation and prediction for spatial generalized linear mixed models with parametric links via reparameterized importance sampling

    Get PDF
    Spatial generalized linear mixed models (SGLMMs) are popular for analyzing non-Gaussian spatial data. These models assume a prescribed link function that relates the underlying spatial field with the mean response. There are circumstances, such as when the data contain outlying observations, where the use of a prescribed link function can result in poor fit, which can be improved by using a parametric link function. Some popular link functions, such as the Box-Cox, are unsuitable because they are inconsistent with the Gaussian assumption of the spatial field. We present sensible choices of parametric link functions which possess desirable properties. It is important to estimate the parameters of the link function, rather than assume a known value. To that end, we present a generalized importance sampling (GIS) estimator based on multiple Markov chains for empirical Bayes analysis of SGLMMs. The GIS estimator, although more efficient than the simple importance sampling, can be highly variable when used to estimate the parameters of certain link functions. Using suitable reparameterizations of the Monte Carlo samples, we propose modified GIS estimators that do not suffer from high variability. We use Laplace approximation for choosing the multiple importance densities in the GIS estimator. Finally, we develop a methodology for selecting models with appropriate link function family, which extends to choosing a spatial correlation function as well. We present an ensemble prediction of the mean response by appropriately weighting the estimates from different models. The proposed methodology is illustrated using simulated and real data examples

    The transform likelihood ratio method for rare event simulation with heavy tails

    Get PDF
    We present a novel method, called the transform likelihood ratio (TLR) method, for estimation of rare event probabilities with heavy-tailed distributions. Via a simple transformation ( change of variables) technique the TLR method reduces the original rare event probability estimation with heavy tail distributions to an equivalent one with light tail distributions. Once this transformation has been established we estimate the rare event probability via importance sampling, using the classical exponential change of measure or the standard likelihood ratio change of measure. In the latter case the importance sampling distribution is chosen from the same parametric family as the transformed distribution. We estimate the optimal parameter vector of the importance sampling distribution using the cross-entropy method. We prove the polynomial complexity of the TLR method for certain heavy-tailed models and demonstrate numerically its high efficiency for various heavy-tailed models previously thought to be intractable. We also show that the TLR method can be viewed as a universal tool in the sense that not only it provides a unified view for heavy-tailed simulation but also can be efficiently used in simulation with light-tailed distributions. We present extensive simulation results which support the efficiency of the TLR method

    Variational autoencoder with weighted samples for high-dimensional non-parametric adaptive importance sampling

    Full text link
    Probability density function estimation with weighted samples is the main foundation of all adaptive importance sampling algorithms. Classically, a target distribution is approximated either by a non-parametric model or within a parametric family. However, these models suffer from the curse of dimensionality or from their lack of flexibility. In this contribution, we suggest to use as the approximating model a distribution parameterised by a variational autoencoder. We extend the existing framework to the case of weighted samples by introducing a new objective function. The flexibility of the obtained family of distributions makes it as expressive as a non-parametric model, and despite the very high number of parameters to estimate, this family is much more efficient in high dimension than the classical Gaussian or Gaussian mixture families. Moreover, in order to add flexibility to the model and to be able to learn multimodal distributions, we consider a learnable prior distribution for the variational autoencoder latent variables. We also introduce a new pre-training procedure for the variational autoencoder to find good starting weights of the neural networks to prevent as much as possible the posterior collapse phenomenon to happen. At last, we explicit how the resulting distribution can be combined with importance sampling, and we exploit the proposed procedure in existing adaptive importance sampling algorithms to draw points from a target distribution and to estimate a rare event probability in high dimension on two multimodal problems.Comment: 20 pages, 5 figure
    • …
    corecore