3,828 research outputs found

    Electronic spin working mechanically

    Get PDF
    A single-electron tunneling (SET) device with a nanoscale central island that can move with respect to the bulk source- and drain electrodes allows for a nanoelectromechanical (NEM) coupling between the electrical current through the device and mechanical vibrations of the island. Although an electromechanical "shuttle" instability and the associated phenomenon of single-electron shuttling were predicted more than 15 years ago, both theoretical and experimental studies of NEM-SET structures are still carried out. New functionalities based on quantum coherence, Coulomb correlations and coherent electron-spin dynamics are of particular current interest. In this article we present a short review of recent activities in this area.Comment: 17 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1303.074

    Phonon-mediated negative differential conductance in molecular quantum dots

    Full text link
    Transport through a single molecular conductor is considered, showing negative differential conductance behavior associated with phonon-mediated electron tunneling processes. This theoretical work is motivated by a recent experiment by Leroy et al. using a carbon nanotube contacted by an STM tip [Nature {\bf 432}, 371 (2004)], where negative differential conductance of the breathing mode phonon side peaks could be observed. A peculiarity of this system is that the tunneling couplings which inject electrons and those which collect them on the substrate are highly asymmetrical. A quantum dot model is used, coupling a single electronic level to a local phonon, forming polaron levels. A "half-shuttle" mechanism is also introduced. A quantum kinetic formulation allows to derive rate equations. Assuming asymmetric tunneling rates, and in the absence of the half-shuttle coupling, negative differential conductance is obtained for a wide range of parameters. A detailed explanation of this phenomenon is provided, showing that NDC is maximal for intermediate electron-phonon coupling. In addition, in absence of a gate, the "floating" level results in two distinct lengths for the current plateaus, related to the capacitive couplings at the two junctions. It is shown that the "half-shuttle" mechanism tends to reinforce the negative differential regions, but it cannot trigger this behavior on its own

    Local density of states on a vibrational quantum dot out of equilibrium

    Full text link
    We calculate the nonequilibrium local density of states on a vibrational quantum dot coupled to two electrodes at T=0 using a numerically exact diagrammatic Monte Carlo method. Our focus is on the interplay between the electron-phonon interaction strength and the bias voltage. We find that the spectral density exhibits a significant voltage dependence if the voltage window includes one or more phonon sidebands. A comparison with well-established approximate approaches indicates that this effect could be attributed to the nonequilibrium distribution of the phonons. Moreover, we discuss the long transient dynamics caused by the electron-phonon coupling.Comment: 9 pages, 11 figure

    Single-electron shuttle based on electron spin

    Get PDF
    A nanoelectromechanical device based on magnetic exchange forces and electron spin flips induced by a weak external magnetic field is suggested. It is shown that this device can operate as a new type of single-electron "shuttle" in the Coulomb blockade regime of electron transport

    Transport of spin-anisotropy without spin currents

    Get PDF
    We revisit the transport of spin-degrees of freedom across an electrically and thermally biased tunnel junction between two ferromagnets with non-collinear magnetizations. Besides the well-known charge and spin currents we show that a non-zero spin-quadrupole current flows between the ferromagnets. This tensor-valued current describes the non-equilibrium transport of spin-anisotropy relating to both local and non-local multi-particle spin correlations of the circuit. This quadratic spin-anisotropy, quantified in terms of the spin-quadrupole moment, is fundamentally a two-electron quantity. In spin-valves with an embedded quantum dot such currents have been shown to result in a quadrupole accumulation that affects the measurable quantum dot spin and charge dynamics. The spin-valve model studied here allows fundamental questions about spin-quadrupole storage and transport to be worked out in detail, while ignoring the detection by a quantum dot. This physical understanding of this particular device is of importance for more complex devices where spin-quadrupole transport can be detected. We demonstrate that, as far as storage and transport are concerned, the spin anisotropy is only partly determined by the spin polarization. In fact, for a thermally biased spin-valve the charge- and spin-current may vanish, while a pure exchange spin-quadrupole current remains, which appears as a fundamental consequence of Pauli's principle. We extend the real-time diagrammatic approach to efficiently calculate the average of multi-particle spin-observables, in particular the spin-quadrupole current. Although the paper addresses only leading order and spin-conserving tunneling we formulate the technique for arbitrary order in an arbitrary, spin-dependent tunnel coupling in a way that lends itself to extension to quantum-dot spin-valve structures
    corecore