3,017 research outputs found

    Single Lead EMG signal to Control an Upper Limb Exoskeleton Using Embedded Machine Learning on Raspberry Pi

    Get PDF
    Post-stroke can cause partial or complete paralysis of the human limb. Delayed rehabilitation steps in post-stroke patients can cause muscle atrophy and limb stiffness. Post-stroke patients require an upper limb exoskeleton device for the rehabilitation process. Several previous studies used more than one electrode lead to control the exoskeleton. The use of many electrode leads can lead to an increase in complexity in terms of hardware and software. Therefore, this research aims to develop single lead EMG pattern recognition to control an upper limb exoskeleton. The main contribution of this research is that the robotic upper limb exoskeleton device can be controlled using a single lead EMG. EMG signals were tapped at the biceps point with a sampling frequency of 2000 Hz. A Raspberry Pi 3B+ was used to embed the data acquisition, feature extraction, classification and motor control by using multithread algorithm. The exoskeleton arm frame is made using 3D printing technology using a high torque servo motor drive. The control process is carried out by extracting EMG signals using EMG features (mean absolute value, root mean square, variance) further extraction results will be trained on machine learning (decision tree (DT), linear regression (LR), polynomial regression (PR), and random forest (RF)). The results show that machine learning decision tree and random forest produce the highest accuracy compared to other classifiers. The accuracy of DT and RF are of 96.36±0.54% and 95.67±0.76%, respectively. Combining the EMG features, shows that there is no significant difference in accuracy (p-value 0.05). A single lead EMG electrode can control the upper limb exoskeleton robot device well

    Prediction of isometric motor tasks and effort levels based on high-density EMG in patients with incomplete spinal cord injury

    Get PDF
    Objective. The development of modern assistive and rehabilitation devices requires reliable and easy-to-use methods to extract neural information for control of devices. Group-specific pattern recognition identifiers are influenced by inter-subject variability. Based on high-density EMG (HD-EMG) maps, our research group has already shown that inter-subject muscle activation patterns exist in a population of healthy subjects. The aim of this paper is to analyze muscle activation patterns associated with four tasks (flexion/extension of the elbow, and supination/pronation of the forearm) at three different effort levels in a group of patients with incomplete Spinal Cord Injury (iSCI). Approach. Muscle activation patterns were evaluated by the automatic identification of these four isometric tasks along with the identification of levels of voluntary contractions. Two types of classifiers were considered in the identification: linear discriminant analysis and support vector machine. Main results. Results show that performance of classification increases when combining features extracted from intensity and spatial information of HD-EMG maps (accuracy = 97.5%). Moreover, when compared to a population with injuries at different levels, a lower variability between activation maps was obtained within a group of patients with similar injury suggesting stronger task-specific and effort-level-specific co-activation patterns, which enable better prediction results. Significance. Despite the challenge of identifying both the four tasks and the three effort levels in patients with iSCI, promising results were obtained which support the use of HD-EMG features for providing useful information regarding motion and force intentionPeer ReviewedPostprint (author's final draft

    Brain-machine interfaces for rehabilitation in stroke: A review

    Get PDF
    BACKGROUND: Motor paralysis after stroke has devastating consequences for the patients, families and caregivers. Although therapies have improved in the recent years, traditional rehabilitation still fails in patients with severe paralysis. Brain-machine interfaces (BMI) have emerged as a promising tool to guide motor rehabilitation interventions as they can be applied to patients with no residual movement. OBJECTIVE: This paper reviews the efficiency of BMI technologies to facilitate neuroplasticity and motor recovery after stroke. METHODS: We provide an overview of the existing rehabilitation therapies for stroke, the rationale behind the use of BMIs for motor rehabilitation, the current state of the art and the results achieved so far with BMI-based interventions, as well as the future perspectives of neural-machine interfaces. RESULTS: Since the first pilot study by Buch and colleagues in 2008, several controlled clinical studies have been conducted, demonstrating the efficacy of BMIs to facilitate functional recovery in completely paralyzed stroke patients with noninvasive technologies such as the electroencephalogram (EEG). CONCLUSIONS: Despite encouraging results, motor rehabilitation based on BMIs is still in a preliminary stage, and further improvements are required to boost its efficacy. Invasive and hybrid approaches are promising and might set the stage for the next generation of stroke rehabilitation therapies.This study was funded by the Bundesministerium für Bildung und Forschung BMBF MOTORBIC (FKZ13GW0053)andAMORSA(FKZ16SV7754), the Deutsche Forschungsgemeinschaft (DFG), the fortüne-Program of the University of Tübingen (2422-0-0 and 2452-0-0), and the Basque GovernmentScienceProgram(EXOTEK:KK2016/00083). NIL was supported by the Basque Government’s scholarship for predoctoral students

    Functional Electrical Stimulation mediated by Iterative Learning Control and 3D robotics reduces motor impairment in chronic stroke

    Get PDF
    Background: Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods: Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results: From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions: The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this

    The re-education of upper limb movement post stroke using iterative learning control mediated by electrical stimulation

    No full text
    An inability to perform tasks involving reaching is a common problem following stroke. Evidence supports the use of robotic therapy and electrical stimulation (ES) to reduce upper limb impairments following stroke, but current systems may not encourage maximal voluntary contribution from the participant. This study developed and tested iterative learning control (ILC) algorithms mediated by ES, using a purpose designed robotic workstation, for upper limb rehabilitation post stroke. Surface electromyography (EMG) which may be related to impaired performance and function was used to investigate seven shoulder and elbow muscle activation patterns in eight neurologically intact and five chronic stroke participants during nine tracking tasks. The participants’ forearm was supported using a hinged arm-holder, which constrained their hand to move in a two dimensional horizontal plane.Outcome measures taken prior to and after an intervention consisted of the Fugl-Meyer Assessment (FMA) and the Action Research Arm Test (ARAT), isometric force and error tracking. The intervention for stroke participants consisted of eighteen sessions in which a similar range of tracking tasks were performed with the addition of responsive electrical stimulation to their triceps muscle. A question set was developed to understand participants’ perceptions of the ILC system. Statistically significant improvements were measured (p?0.05) in: FMA motor score, unassisted tracking, and in isometric force. Statistically significant differences in muscle activation patterns were observed between stroke and neurologically intact participants for timing, amplitude and coactivation patterns. After the intervention significant changes were observed in many of these towards neurologically intact ranges. The robot–assisted therapy was well accepted and tolerated by the stroke participants. This study has demonstrated the feasibility of using ILC mediated by ES for upper limb stroke rehabilitation in the treatment of stroke patients with upper limb hemiplegia

    A Pilot Study of Individual Muscle Force Prediction during Elbow Flexion and Extension in the Neurorehabilitation Field

    Get PDF
    This paper proposes a neuromusculoskeletal (NMS) model to predict individual muscle force during elbow flexion and extension. Four male subjects were asked to do voluntary elbow flexion and extension. An inertial sensor and surface electromyography (sEMG) sensors were attached to subject's forearm. Joint angle calculated by fusion of acceleration and angular rate using an extended Kalman filter (EKF) and muscle activations obtained from the sEMG signals were taken as the inputs of the proposed NMS model to determine individual muscle force. The result shows that our NMS model can predict individual muscle force accurately, with the ability to reflect subject-specific joint dynamics and neural control solutions. Our method incorporates sEMG and motion data, making it possible to get a deeper understanding of neurological, physiological, and anatomical characteristics of human dynamic movement. We demonstrate the potential of the proposed NMS model for evaluating the function of upper limb movements in the field of neurorehabilitation

    Neuromechanical measurement of motor impairments in relation to upper limb activity limitations after stroke

    No full text
    Loss of upper-limb function is a problem following stroke. Recent research has led to the emergence of new treatments but progress is hampered by lack of reliable objective measures of impairment, and understanding of the underlying impairment mechanisms associated with loss and recovery of functional activity. The aim of this research was to identify, using neuromechanical measurement methods, inter-relationships between motor impairments, and correlates of motor impairments with functional activity limitation in the upper limb of acute and chronic stroke survivors.An instrumented rig has been developed to measure impairments: muscle weakness, active range of movement, motor control accuracy in rhythmic and discrete tracking tasks, spasticity, coactivation, contracture and non-neural stiffness. In pilot studies, signal processing and data analysis techniques have been used to generate novel, clinically and physiologically relevant indices to quantify impairments. In a Main Study, 13 older impaired participants in the acute phase post-stroke, 13 in the chronic phase 14 age-matched unimpaired participants underwent rig assessments and performed a test of upper limb activity. A sub-group of impaired participants were tested on two days for test-retest reliability evaluation.Statistical tests have confirmed the validity of the impairments to distinguish between acute and chronic patients and unimpaired individuals, except coactivation during discrete movements and non-neural stiffness. Repeatability coefficients for the active test indices have been presented as benchmark values for use in future trials. The muscle activation indices showed lower repeatability which highlights the challenge of using these to measure change over time. The impairments that contributed to lower motor control accuracy were reduced extensor weakness, delayed extensor onset timing, coactivation and smaller extension AROM and PROM; coactivation was more strongly associated with motor control accuracy than with spasticity or stiffness.The most important contributors to functional activity in the acute group was extensor weakness, and in the chronic group was motor control accuracy and coactivation (rhythmic task). Contracture was important contributor in both groups, and was associated with weakness and loss of active range of movement rather than spasticity. The findings support the notion that rehabilitation strategies should focus on increasing muscle strength and prevention of contracture. However, assessment of more complex impairments like motor control accuracy and coactivation may be crucial to better target therapy, especially in the later phases post-stroke

    A Systematic Review Establishing the Current State-of-the-Art, the Limitations, and the DESIRED Checklist in Studies of Direct Neural Interfacing With Robotic Gait Devices in Stroke Rehabilitation

    Get PDF
    Background: Stroke is a disease with a high associated disability burden. Robotic-assisted gait training offers an opportunity for the practice intensity levels associated with good functional walking outcomes in this population. Neural interfacing technology, electroencephalography (EEG), or electromyography (EMG) can offer new strategies for robotic gait re-education after a stroke by promoting more active engagement in movement intent and/or neurophysiological feedback. Objectives: This study identifies the current state-of-the-art and the limitations in direct neural interfacing with robotic gait devices in stroke rehabilitation. Methods: A pre-registered systematic review was conducted using standardized search operators that included the presence of stroke and robotic gait training and neural biosignals (EMG and/or EEG) and was not limited by study type. Results: From a total of 8,899 papers identified, 13 articles were considered for the final selection. Only five of the 13 studies received a strong or moderate quality rating as a clinical study. Three studies recorded EEG activity during robotic gait, two of which used EEG for BCI purposes. While demonstrating utility for decoding kinematic and EMG-related gait data, no EEG study has been identified to close the loop between robot and human. Twelve of the studies recorded EMG activity during or after robotic walking, primarily as an outcome measure. One study used multisource information fusion from EMG, joint angle, and force to modify robotic commands in real time, with higher error rates observed during active movement. A novel study identified used EMG data during robotic gait to derive the optimal, individualized robot-driven step trajectory. Conclusions: Wide heterogeneity in the reporting and the purpose of neurobiosignal use during robotic gait training after a stroke exists. Neural interfacing with robotic gait after a stroke demonstrates promise as a future field of study. However, as a nascent area, direct neural interfacing with robotic gait after a stroke would benefit from a more standardized protocol for biosignal collection and processing and for robotic deployment. Appropriate reporting for clinical studies of this nature is also required with respect to the study type and the participants' characteristics

    Brain-computer interface technology and neuroelectrical imaging to improve motor recovery after stroke

    Get PDF
    Stroke is defined as a focal lesion in the brain caused by acute ischemia or hemorrhage. The events that characterize acute stroke as well as the spontaneous recovery process occurring in the subacute phase, demonstrate that the focal damage affects remote interconnected areas. On the other hand, interconnected areas largely contribute to reorganization of the central nervous system (CNS) along the recovery process (plasticity) throughout compensatory or restorative mechanisms which can also lead to unwanted effects (maladaptive plasticity). Such post-stroke brain reorganization occurring spontaneously or within a rehabilitation program, is the object of wide literature in the fields of neuroimaging and neurophysiology. Brain-Computer Interfaces (BCIs) allow recognition, monitoring and reinforcement of specific brain activities as recorded eg. via electroencephalogram (EEG) and use such brain activity to control external devices via a computer. Sensorimotor rhythm (SMR) based BCIs exploit the modulation occurring in the EEG in response to motor imagery (MI) tasks: the subject is asked to perform MI of eg. left or right hand in order to control a cursor on a screen. In the context of post-stroke motor rehabilitation, such recruitment of brain activity within the motor system through MI can be used to harness brain reorganization towards a better functional outcome. Since 2009 my research activity has been focused mainly on BCI applications for upper limb motor rehabilitation after stroke within national (Ministry of Health) and international (EU) projects. I conducted (or participated to) several basic and clinical studies involving both healthy subjects and stroke patients and employing a combination of neurophysiological techniques (EEG, transcranial magnetic stimulation – TMS) and BCI technology (De Vico Fallani et al., 2013; Kaiser et al., 2012; Morone et al., 2015; Pichiorri et al., 2011). Such studies culminated in a randomized controlled trial (RCT) conducted on subacute stroke patients in which we demonstrated that a one-month training with a BCI system, which was specifically designed to support upper limb rehabilitation after stroke, significantly improved functional outcome (upper limb motor function) in the target population. Moreover, we observed changes in brain activity and connectivity (from high-density EEG recordings) occurring in motor related frequency ranges that significantly correlated to the functional outcome in the target group (Pichiorri et al., 2015). Following these promising results, my activity proceeded along two main pathways during the PhD course. On one hand, efforts were made ameliorate the prototypal BCI system used in (Pichiorri et al., 2015); the current system (called Promotœr) is an all-in-one BCI training station with several improvements in usability for both the patient and the therapist (it is easier to use, employs wireless EEG system with reduced number of electrodes) (Colamarino et al., 2017a,b). The Promotœr system is currently employed in add-on to standard rehabilitation therapy in patients admitted at Fondazione Santa Lucia. Preliminary results are available on chronic stroke patients, partially retracing those obtained in the subacute phase (Pichiorri et al., 2015) as well as explorative reports on patients with upper limb motor deficit of central origin other than stroke (eg. spinal cord injury at the cervical level). In the last year, I submitted research projects related to the Promotœr system to private and public institutions. These projects foresee i) the addition of a proprioceptive feedback to the current visual one by means of Functional Electrical Stimulation (FES) ii) online evaluation of residual voluntary movement as recorded via electromyography (EMG), and iii) improvements in the BCI control features to integrate concepts derived from recent advancements in brain connectivity. On these themes, I recently obtained a grant from a private Swedish foundation. On the other hand, I conducted further analyses of data collected in the RCT (Pichiorri et al., 2015) to identify possible neurophysiological markers of good motor recovery. Specifically, I focused on interhemispheric connectivity (EEG derived) and its correlation with the integrity of the corticospinal tract (as assessed by TMS) and upper limb function (measured with clinical scales) in subacute stroke patients. The results of these analyses were recently published on an international peer-reviewed journal (Pichiorri et al., 2018). In the first chapter of this thesis, I will provide an updated overview on BCI application in neurorehabilitation (according to the current state-of-the-art). The content of this chapter is part of a wider book chapter, currently in press in Handbook of Clinical Neurology (Pichiorri and Mattia, in press). In the second chapter, I will report on the status of BCI applications for motor rehabilitation of the upper limb according to the approach I developed along my research activity, including ongoing projects and prliminary findings. In the third chapter I will present the results of a neurophysiological study on subacute stroke patients, exploring EEG derived interhemispheric connectivity as a possible neurophysiological correlate of corticospinal tract integrity and functional impairment of the upper limb. Overall this work aims to outline the current and potential role of BCI technology and EEG based neuroimaging in post-stroke rehabilitation mainly in relation to upper limb motor function, nonetheless touching upon possible different applications and contexts in neighboring research fields

    Development of an EMG-based Muscle Health Model for Elbow Trauma Patients

    Get PDF
    Musculoskeletal (MSK) conditions are a leading cause of pain and disability worldwide. Rehabilitation is critical for recovery from these conditions and for the prevention of long-term disability. Robot-assisted therapy has been demonstrated to provide improvements to stroke rehabilitation in terms of efficiency and patient adherence. However, there are no wearable robot-assisted solutions for patients with MSK injuries. One of the limiting factors is the lack of appropriate models that allow the use of biosignals as an interface input. Furthermore, there are no models to discern the health of MSK patients as they progress through their therapy. This thesis describes the design, data collection, analysis, and validation of a novel muscle health model for elbow trauma patients. Surface electromyography (sEMG) data sets were collected from the injured arms of elbow trauma patients performing 10 upper-limb motions. The data were assessed and compared to sEMG data collected from the patients\u27 contralateral healthy limbs. A statistical analysis was conducted to identify trends relating the sEMG signals to muscle health. sEMG-based classification models for muscle health were developed. Relevant sEMG features were identified and combined into feature sets for the classification models. The classifiers were used to distinguish between two levels of health: healthy and injured (50% baseline accuracy rate). Classification models based on individual motions achieved cross-validation accuracies of 48.2--79.6%. Following feature selection and optimization of the models, cross-validation accuracies of up to 82.1% were achieved. This work suggests that there is a potential for implementing an EMG-based model of muscle health in a rehabilitative elbow brace to assess patients recovering from MSK elbow trauma. However, more research is necessary to improve the accuracy and the specificity of the classification models
    corecore