7,399 research outputs found

    Tensor Monte Carlo: particle methods for the GPU era

    Get PDF
    Multi-sample, importance-weighted variational autoencoders (IWAE) give tighter bounds and more accurate uncertainty estimates than variational autoencoders (VAE) trained with a standard single-sample objective. However, IWAEs scale poorly: as the latent dimensionality grows, they require exponentially many samples to retain the benefits of importance weighting. While sequential Monte-Carlo (SMC) can address this problem, it is prohibitively slow because the resampling step imposes sequential structure which cannot be parallelised, and moreover, resampling is non-differentiable which is problematic when learning approximate posteriors. To address these issues, we developed tensor Monte-Carlo (TMC) which gives exponentially many importance samples by separately drawing KK samples for each of the nn latent variables, then averaging over all KnK^n possible combinations. While the sum over exponentially many terms might seem to be intractable, in many cases it can be computed efficiently as a series of tensor inner-products. We show that TMC is superior to IWAE on a generative model with multiple stochastic layers trained on the MNIST handwritten digit database, and we show that TMC can be combined with standard variance reduction techniques

    Denoising Criterion for Variational Auto-Encoding Framework

    Full text link
    Denoising autoencoders (DAE) are trained to reconstruct their clean inputs with noise injected at the input level, while variational autoencoders (VAE) are trained with noise injected in their stochastic hidden layer, with a regularizer that encourages this noise injection. In this paper, we show that injecting noise both in input and in the stochastic hidden layer can be advantageous and we propose a modified variational lower bound as an improved objective function in this setup. When input is corrupted, then the standard VAE lower bound involves marginalizing the encoder conditional distribution over the input noise, which makes the training criterion intractable. Instead, we propose a modified training criterion which corresponds to a tractable bound when input is corrupted. Experimentally, we find that the proposed denoising variational autoencoder (DVAE) yields better average log-likelihood than the VAE and the importance weighted autoencoder on the MNIST and Frey Face datasets.Comment: ICLR conference submissio

    Gravity-Inspired Graph Autoencoders for Directed Link Prediction

    Full text link
    Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as powerful node embedding methods. In particular, graph AE and VAE were successfully leveraged to tackle the challenging link prediction problem, aiming at figuring out whether some pairs of nodes from a graph are connected by unobserved edges. However, these models focus on undirected graphs and therefore ignore the potential direction of the link, which is limiting for numerous real-life applications. In this paper, we extend the graph AE and VAE frameworks to address link prediction in directed graphs. We present a new gravity-inspired decoder scheme that can effectively reconstruct directed graphs from a node embedding. We empirically evaluate our method on three different directed link prediction tasks, for which standard graph AE and VAE perform poorly. We achieve competitive results on three real-world graphs, outperforming several popular baselines.Comment: ACM International Conference on Information and Knowledge Management (CIKM 2019
    • …
    corecore