12,310 research outputs found

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe

    Nonlinear optimization for a tumor invasion PDE model

    Get PDF
    In this work, we introduce a methodology to approximate unknown parameters that appear on a non-linear reaction–diffusion model of tumor invasion. These equations consider that tumor-induced alteration of micro-environmental pH furnishes a mechanism for cancer invasion. A coupled system reaction–diffusion explaining this model is given by three partial differential equations for the non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess concentration of H ++ ions. The tumor model parameters have a corresponding biological meaning: the reabsorption rate, the destructive influence of H ++ ions in the healthy tissue, the growth rate of tumor tissue and the diffusion coefficient. We propose to solve the direct problem using the Finite Element Method (FEM) and minimize an appropriate functional including both the real data (obtained via in-vitro experiments and fluorescence ratio imaging microscopy) and the numerical solution. The gradient of the functional is computed by the adjoint method.Fil: Quiroga, Andrés Agustin Ignacio. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada. Grupo de Mecanica Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, German Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Fernández Ferreyra, Damián Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Turner, Cristina Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentin

    A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces

    Full text link
    The closest point method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943-1961, [2008]) is an embedding method developed to solve a variety of partial differential equations (PDEs) on smooth surfaces, using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. Recently, a closest point method with explicit time-stepping was proposed that uses finite differences derived from radial basis functions (RBF-FD). Here, we propose a least-squares implicit formulation of the closest point method to impose the constant-along-normal extension of the solution on the surface into the embedding space. Our proposed method is particularly flexible with respect to the choice of the computational grid in the embedding space. In particular, we may compute over a computational tube that contains problematic nodes. This fact enables us to combine the proposed method with the grid based particle method (Leung and Zhao, J. Comput. Phys. 228(8):2993-3024, [2009]) to obtain a numerical method for approximating PDEs on moving surfaces. We present a number of examples to illustrate the numerical convergence properties of our proposed method. Experiments for advection-diffusion equations and Cahn-Hilliard equations that are strongly coupled to the velocity of the surface are also presented

    Feature based volumes for implicit intersections.

    Get PDF
    The automatic generation of volumes bounding the intersection of two implicit surfaces (isosurfaces of real functions of 3D point coordinates) or feature based volumes (FBV) is presented. Such FBVs are defined by constructive operations, function normalization and offsetting. By applying various offset operations to the intersection of two surfaces, we can obtain variations in the shape of an FBV. The resulting volume can be used as a boundary for blending operations applied to two corresponding volumes, and also for visualization of feature curves and modeling of surface based structures including microstructures
    corecore