6,475 research outputs found

    Long cycles in graphs containing a 2-factor with many odd components

    Get PDF
    We prove a result on the length of a longest cycle in a graph on n vertices that contains a 2-factor and satisfies d(u)+d(c)+d(w)n+2 for every tiple u, v, w of independent vertices. As a corollary we obtain the follwing improvement of a conjectre of Häggkvist (1992): Let G be a 2-connected graph on n vertices where every pair of nonadjacent vertices has degree sum at least n-k and assume G has a 2-factor with at least k+1 odd components. Then G is hamiltonian

    Long cycles, degree sums and neighborhood unions

    Get PDF
    AbstractFor a graph G, define the parameters α(G)=max{|S| |S is an independent set of vertices of G}, σk(G)=min{∑ki=1d(vi)|{v1,…,vk} is an independent set} and NCk(G)= min{|∪ki=1 N(vi)∥{v1,…,vk} is an independent set} (k⩾2). It is shown that every 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,n+NCr+5+∈(n+r)(G)-α(G)}, where ε(i)=3(⌈13i⌉−13i). This result extends previous results in Bauer et al. (1989/90), Faßbender (1992) and Flandrin et al. (1991). It is also shown that a 1-tough graph G of order n⩾3 with σ3(G)⩾n+r⩾n has a cycle of length at least min{n,2NC⌊18(n+6r+17)⌋(G)}. Analogous results are established for 2-connected graphs

    Limit Cycle Bifurcations from Centers of Symmetric Hamiltonian Systems Perturbing by Cubic Polynomials

    Full text link
    In this paper, we consider some cubic near-Hamiltonian systems obtained from perturbing the symmetric cubic Hamiltonian system with two symmetric singular points by cubic polynomials. First, following Han [2012] we develop a method to study the analytical property of the Melnikov function near the origin for near-Hamiltonian system having the origin as its elementary center or nilpotent center. Based on the method, a computationally efficient algorithm is established to systematically compute the coefficients of Melnikov function. Then, we consider the symmetric singular points and present the conditions for one of them to be elementary center or nilpotent center. Under the condition for the singular point to be a center, we obtain the normal form of the Hamiltonian systems near the center. Moreover, perturbing the symmetric cubic Hamiltonian systems by cubic polynomials, we consider limit cycles bifurcating from the center using the algorithm to compute the coefficients of Melnikov function. Finally, perturbing the symmetric hamiltonian system by symmetric cubic polynomials, we consider the number of limit cycles near one of the symmetric centers of the symmetric near-Hamiltonian system, which is same to that of another center

    Counting Euler Tours in Undirected Bounded Treewidth Graphs

    Get PDF
    We show that counting Euler tours in undirected bounded tree-width graphs is tractable even in parallel - by proving a #SAC1\#SAC^1 upper bound. This is in stark contrast to #P-completeness of the same problem in general graphs. Our main technical contribution is to show how (an instance of) dynamic programming on bounded \emph{clique-width} graphs can be performed efficiently in parallel. Thus we show that the sequential result of Espelage, Gurski and Wanke for efficiently computing Hamiltonian paths in bounded clique-width graphs can be adapted in the parallel setting to count the number of Hamiltonian paths which in turn is a tool for counting the number of Euler tours in bounded tree-width graphs. Our technique also yields parallel algorithms for counting longest paths and bipartite perfect matchings in bounded-clique width graphs. While establishing that counting Euler tours in bounded tree-width graphs can be computed by non-uniform monotone arithmetic circuits of polynomial degree (which characterize #SAC1\#SAC^1) is relatively easy, establishing a uniform #SAC1\#SAC^1 bound needs a careful use of polynomial interpolation.Comment: 17 pages; There was an error in the proof of the GapL upper bound claimed in the previous version which has been subsequently remove
    • …
    corecore