4,556 research outputs found

    Application of Operator Splitting Methods in Finance

    Full text link
    Financial derivatives pricing aims to find the fair value of a financial contract on an underlying asset. Here we consider option pricing in the partial differential equations framework. The contemporary models lead to one-dimensional or multidimensional parabolic problems of the convection-diffusion type and generalizations thereof. An overview of various operator splitting methods is presented for the efficient numerical solution of these problems. Splitting schemes of the Alternating Direction Implicit (ADI) type are discussed for multidimensional problems, e.g. given by stochastic volatility (SV) models. For jump models Implicit-Explicit (IMEX) methods are considered which efficiently treat the nonlocal jump operator. For American options an easy-to-implement operator splitting method is described for the resulting linear complementarity problems. Numerical experiments are presented to illustrate the actual stability and convergence of the splitting schemes. Here European and American put options are considered under four asset price models: the classical Black-Scholes model, the Merton jump-diffusion model, the Heston SV model, and the Bates SV model with jumps

    Weak order for the discretization of the stochastic heat equation

    Get PDF
    In this paper we study the approximation of the distribution of XtX_t Hilbert--valued stochastic process solution of a linear parabolic stochastic partial differential equation written in an abstract form as dXt+AXtdt=Q1/2dWt,X0=x∈H,t∈[0,T], dX_t+AX_t dt = Q^{1/2} d W_t, \quad X_0=x \in H, \quad t\in[0,T], driven by a Gaussian space time noise whose covariance operator QQ is given. We assume that A−αA^{-\alpha} is a finite trace operator for some α>0\alpha>0 and that QQ is bounded from HH into D(Aβ)D(A^\beta) for some β≥0\beta\geq 0. It is not required to be nuclear or to commute with AA. The discretization is achieved thanks to finite element methods in space (parameter h>0h>0) and implicit Euler schemes in time (parameter Δt=T/N\Delta t=T/N). We define a discrete solution XhnX^n_h and for suitable functions ϕ\phi defined on HH, we show that |\E \phi(X^N_h) - \E \phi(X_T) | = O(h^{2\gamma} + \Delta t^\gamma) \noindent where γ<1−α+β\gamma<1- \alpha + \beta. Let us note that as in the finite dimensional case the rate of convergence is twice the one for pathwise approximations

    A modified semi--implict Euler-Maruyama Scheme for finite element discretization of SPDEs with additive noise

    Full text link
    We consider the numerical approximation of a general second order semi--linear parabolic stochastic partial differential equation (SPDE) driven by additive space-time noise. We introduce a new modified scheme using a linear functional of the noise with a semi--implicit Euler--Maruyama method in time and in space we analyse a finite element method (although extension to finite differences or finite volumes would be possible). We prove convergence in the root mean square L2L^{2} norm for a diffusion reaction equation and diffusion advection reaction equation. We present numerical results for a linear reaction diffusion equation in two dimensions as well as a nonlinear example of two-dimensional stochastic advection diffusion reaction equation. We see from both the analysis and numerics that the proposed scheme has better convergence properties than the standard semi--implicit Euler--Maruyama method

    On the well-posedness of the stochastic Allen-Cahn equation in two dimensions

    Get PDF
    White noise-driven nonlinear stochastic partial differential equations (SPDEs) of parabolic type are frequently used to model physical and biological systems in space dimensions d = 1,2,3. Whereas existence and uniqueness of weak solutions to these equations are well established in one dimension, the situation is different for d \geq 2. Despite their popularity in the applied sciences, higher dimensional versions of these SPDE models are generally assumed to be ill-posed by the mathematics community. We study this discrepancy on the specific example of the two dimensional Allen-Cahn equation driven by additive white noise. Since it is unclear how to define the notion of a weak solution to this equation, we regularize the noise and introduce a family of approximations. Based on heuristic arguments and numerical experiments, we conjecture that these approximations exhibit divergent behavior in the continuum limit. The results strongly suggest that a series of published numerical studies are problematic: shrinking the mesh size in these simulations does not lead to the recovery of a physically meaningful limit.Comment: 21 pages, 4 figures; accepted by Journal of Computational Physics (Dec 2011

    Approximation of the invariant measure with an Euler scheme for Stochastic PDE's driven by Space-Time White Noise

    Full text link
    In this article, we consider a stochastic PDE of parabolic type, driven by a space-time white-noise, and its numerical discretization in time with a semi-implicit Euler scheme. When the nonlinearity is assumed to be bounded, then a dissipativity assumption is satisfied, which ensures that the SDPE admits a unique invariant probability measure, which is ergodic and strongly mixing - with exponential convergence to equilibrium. Considering test functions of class C2\mathcal{C}^2, bounded and with bounded derivatives, we prove that we can approximate this invariant measure using the numerical scheme, with order 1/2 with respect to the time step

    A weighted reduced basis method for parabolic PDEs with random data

    Full text link
    This work considers a weighted POD-greedy method to estimate statistical outputs parabolic PDE problems with parametrized random data. The key idea of weighted reduced basis methods is to weight the parameter-dependent error estimate according to a probability measure in the set-up of the reduced space. The error of stochastic finite element solutions is usually measured in a root mean square sense regarding their dependence on the stochastic input parameters. An orthogonal projection of a snapshot set onto a corresponding POD basis defines an optimum reduced approximation in terms of a Monte Carlo discretization of the root mean square error. The errors of a weighted POD-greedy Galerkin solution are compared against an orthogonal projection of the underlying snapshots onto a POD basis for a numerical example involving thermal conduction. In particular, it is assessed whether a weighted POD-greedy solutions is able to come significantly closer to the optimum than a non-weighted equivalent. Additionally, the performance of a weighted POD-greedy Galerkin solution is considered with respect to the mean absolute error of an adjoint-corrected functional of the reduced solution.Comment: 15 pages, 4 figure
    • …
    corecore