9,530 research outputs found

    Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback

    Full text link
    Albeit, the implicit feedback based recommendation problem - when only the user history is available but there are no ratings - is the most typical setting in real-world applications, it is much less researched than the explicit feedback case. State-of-the-art algorithms that are efficient on the explicit case cannot be straightforwardly transformed to the implicit case if scalability should be maintained. There are few if any implicit feedback benchmark datasets, therefore new ideas are usually experimented on explicit benchmarks. In this paper, we propose a generic context-aware implicit feedback recommender algorithm, coined iTALS. iTALS apply a fast, ALS-based tensor factorization learning method that scales linearly with the number of non-zero elements in the tensor. The method also allows us to incorporate diverse context information into the model while maintaining its computational efficiency. In particular, we present two such context-aware implementation variants of iTALS. The first incorporates seasonality and enables to distinguish user behavior in different time intervals. The other views the user history as sequential information and has the ability to recognize usage pattern typical to certain group of items, e.g. to automatically tell apart product types or categories that are typically purchased repetitively (collectibles, grocery goods) or once (household appliances). Experiments performed on three implicit datasets (two proprietary ones and an implicit variant of the Netflix dataset) show that by integrating context-aware information with our factorization framework into the state-of-the-art implicit recommender algorithm the recommendation quality improves significantly.Comment: Accepted for ECML/PKDD 2012, presented on 25th September 2012, Bristol, U

    Knowledge-aware Complementary Product Representation Learning

    Full text link
    Learning product representations that reflect complementary relationship plays a central role in e-commerce recommender system. In the absence of the product relationships graph, which existing methods rely on, there is a need to detect the complementary relationships directly from noisy and sparse customer purchase activities. Furthermore, unlike simple relationships such as similarity, complementariness is asymmetric and non-transitive. Standard usage of representation learning emphasizes on only one set of embedding, which is problematic for modelling such properties of complementariness. We propose using knowledge-aware learning with dual product embedding to solve the above challenges. We encode contextual knowledge into product representation by multi-task learning, to alleviate the sparsity issue. By explicitly modelling with user bias terms, we separate the noise of customer-specific preferences from the complementariness. Furthermore, we adopt the dual embedding framework to capture the intrinsic properties of complementariness and provide geometric interpretation motivated by the classic separating hyperplane theory. Finally, we propose a Bayesian network structure that unifies all the components, which also concludes several popular models as special cases. The proposed method compares favourably to state-of-art methods, in downstream classification and recommendation tasks. We also develop an implementation that scales efficiently to a dataset with millions of items and customers

    SCFM: Social and crowdsourcing factorization machines for recommendation

    Get PDF
    With the rapid development of social networks, the exponential growth of social information has attracted much attention. Social information has great value in recommender systems to alleviate the sparsity and cold start problem. On the other hand, the crowd computing empowers recommender systems by utilizing human wisdom. Internal user reviews can be exploited as the wisdom of the crowd to contribute information. In this paper, we propose social and crowdsourcing factorization machines, called SCFM. Our approach fuses social and crowd computing into the factorization machine model. For social computing, we calculate the influence value between users by taking users’ social information and user similarity into account. For crowd computing, we apply LDA (Latent Dirichlet Allocation) on people review to obtain sets of underlying topic probabilities. Furthermore, we impose two important constraints called social regularization and domain inner regularization. The experimental results show that our approach outperforms other state-of-the-art methods.This project is supported by the National Natural Science Foundation of China (Nos. 61672340, 61472240, 61572268)

    An overview of video recommender systems: state-of-the-art and research issues

    Get PDF
    Video platforms have become indispensable components within a diverse range of applications, serving various purposes in entertainment, e-learning, corporate training, online documentation, and news provision. As the volume and complexity of video content continue to grow, the need for personalized access features becomes an inevitable requirement to ensure efficient content consumption. To address this need, recommender systems have emerged as helpful tools providing personalized video access. By leveraging past user-specific video consumption data and the preferences of similar users, these systems excel in recommending videos that are highly relevant to individual users. This article presents a comprehensive overview of the current state of video recommender systems (VRS), exploring the algorithms used, their applications, and related aspects. In addition to an in-depth analysis of existing approaches, this review also addresses unresolved research challenges within this domain. These unexplored areas offer exciting opportunities for advancements and innovations, aiming to enhance the accuracy and effectiveness of personalized video recommendations. Overall, this article serves as a valuable resource for researchers, practitioners, and stakeholders in the video domain. It offers insights into cutting-edge algorithms, successful applications, and areas that merit further exploration to advance the field of video recommendation

    Personalized News Recommender using Twitter

    Get PDF
    Online news reading has become a widely popular way to read news articles from news sources around the globe. With the enormous amount of news articles available, users are easily swamped by information of little interest to them. News recommender systems are one approach to help users find interesting articles to read. News recommender systems present the articles to individual users based on their interests rather than presenting articles in order of their occurrence. In this thesis, we present our research on developing personalized news recommendation system with the help of a popular micro-blogging service Twitter . The news articles are ranked based on the popularity of the article that is identified with the help of the tweets from the Twitter\u27s public timeline. Also, user profiles are built based on the user\u27s interests and the news articles are ranked by matching the characteristics of the user profile. With the help of these two approaches, we present a hybrid news recommendation model that recommends interesting news stories to the user based on their popularity and their relevance to the user profile
    • …
    corecore