1,370 research outputs found

    Multiscale Astronomical Image Processing Based on Nonlinear Partial Differential Equations

    Get PDF
    Astronomical applications of recent advances in the field of nonastronomical image processing are presented. These innovative methods, applied to multiscale astronomical images, increase signal-to-noise ratio, do not smear point sources or extended diffuse structures, and are thus a highly useful preliminary step for detection of different features including point sources, smoothing of clumpy data, and removal of contaminants from background maps. We show how the new methods, combined with other algorithms of image processing, unveil fine diffuse structures while at the same time enhance detection of localized objects, thus facilitating interactive morphology studies and paving the way for the automated recognition and classification of different features. We have also developed a new application framework for astronomical image processing that implements some recent advances made in computer vision and modern image processing, along with original algorithms based on nonlinear partial differential equations. The framework enables the user to easily set up and customize an image-processing pipeline interactively; it has various common and new visualization features and provides access to many astronomy data archives. Altogether, the results presented here demonstrate the first implementation of a novel synergistic approach based on integration of image processing, image visualization, and image quality assessment

    Idealized computational models for auditory receptive fields

    Full text link
    This paper presents a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to enable invariance of receptive field responses under natural sound transformations and ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or the combination of a time-causal generalized Gammatone filter over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals.Comment: 55 pages, 22 figures, 3 table

    Medical image enhancement

    Get PDF
    Each image acquired from a medical imaging system is often part of a two-dimensional (2-D) image set whose total presents a three-dimensional (3-D) object for diagnosis. Unfortunately, sometimes these images are of poor quality. These distortions cause an inadequate object-of-interest presentation, which can result in inaccurate image analysis. Blurring is considered a serious problem. Therefore, “deblurring” an image to obtain better quality is an important issue in medical image processing. In our research, the image is initially decomposed. Contrast improvement is achieved by modifying the coefficients obtained from the decomposed image. Small coefficient values represent subtle details and are amplified to improve the visibility of the corresponding details. The stronger image density variations make a major contribution to the overall dynamic range, and have large coefficient values. These values can be reduced without much information loss

    Robust Feature Classification and Editing

    Full text link

    Higher-order nonlinear priors for surface reconstruction

    Get PDF
    Journal ArticleAbstract-For surface reconstruction problems with noisy and incomplete range data, a Bayesian estimation approach can improve the overall quality of the surfaces. The Bayesian approach to surface estimation relies on a likelihood term, which ties the surface estimate to the input data, and the prior, which ensures surface smoothness or continuity. This paper introduces a new high-order, nonlinear prior for surface reconstruction. The proposed prior can smooth complex, noisy surfaces, while preserving sharp, geometric features, and it is a natural generalization of edge-preserving methods in image processing, such as anisotropic diffusion. An exact solution would require solving a fourth-order partial differential equation (PDE), which can be difficult with conventional numerical techniques. Our approach is to solve a cascade system of two second-order PDEs, which resembles the original fourth-order system. This strategy is based on the observation that the generalization of image processing to surfaces entails filtering the surface normals. We solve one PDE for processing the normals and one for refitting the surface to the normals. Furthermore, we implement the associated surface deformations using level sets. Hence, the algorithm can accommodate very complex shapes with arbitrary and changing topologies. This paper gives the mathematical formulation and describes the numerical algorithms. We also show results using range and medical data

    From Continuous Dynamics to Graph Neural Networks: Neural Diffusion and Beyond

    Full text link
    Graph neural networks (GNNs) have demonstrated significant promise in modelling relational data and have been widely applied in various fields of interest. The key mechanism behind GNNs is the so-called message passing where information is being iteratively aggregated to central nodes from their neighbourhood. Such a scheme has been found to be intrinsically linked to a physical process known as heat diffusion, where the propagation of GNNs naturally corresponds to the evolution of heat density. Analogizing the process of message passing to the heat dynamics allows to fundamentally understand the power and pitfalls of GNNs and consequently informs better model design. Recently, there emerges a plethora of works that proposes GNNs inspired from the continuous dynamics formulation, in an attempt to mitigate the known limitations of GNNs, such as oversmoothing and oversquashing. In this survey, we provide the first systematic and comprehensive review of studies that leverage the continuous perspective of GNNs. To this end, we introduce foundational ingredients for adapting continuous dynamics to GNNs, along with a general framework for the design of graph neural dynamics. We then review and categorize existing works based on their driven mechanisms and underlying dynamics. We also summarize how the limitations of classic GNNs can be addressed under the continuous framework. We conclude by identifying multiple open research directions

    PDE-based morphology for matrix fields : numerical solution schemes

    Get PDF
    Tensor fields are important in digital imaging and computer vision. Hence there is a demand for morphological operations to perform e.g. shape analysis, segmentation or enhancement procedures. Recently, fundamental morphological concepts have been transferred to the setting of fields of symmetric positive definite matrices, which are symmetric rank two tensors. This has been achieved by a matrix-valued extension of the nonlinear morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images. Having these two basic operations at our disposal, more advanced morphological operators such as top hats or morphological derivatives for matrix fields with symmetric, positive semidefinite matrices can be constructed. The approach realises a proper coupling of the matrix channels rather than treating them independently. However, from the algorithmic side the usual scalar morphological PDEs are transport equations that require special upwind-schemes or novel high-accuracy predictor-corrector approaches for their adequate numerical treatment. In this chapter we propose the non-trivial extension of these schemes to the matrix-valued setting by exploiting the special algebraic structure available for symmetric matrices. Furthermore we compare the performance and juxtapose the results of these novel matrix-valued high-resolution-type (HRT) numerical schemes by considering top hats and morphological derivatives applied to artificial and real world data sets

    A robust ransac-based planet radius estimation for onboard visual based navigation

    Get PDF
    Individual spacecraft manual navigation by human operators from ground station is expected to be an emerging problem as the number of spacecraft for space exploration increases. Hence, as an attempt to reduce the burden to control multiple spacecraft, future missions will employ smart spacecraft able to navigate and operate autonomously. Recently, image-based optical navigation systems have proved to be promising solutions for inexpensive autonomous navigation. In this paper, we propose a robust image processing pipeline for estimating the center and radius of planets and moons in an image taken by an on-board camera. Our custom image pre-processing pipeline is tailored for resource-constrained applications, as it features a computationally simple processing flow with a limited memory footprint. The core of the proposed pipeline is a best-fitting model based on the RANSAC algorithm that is able to handle images corrupted with Gaussian noise, image distortions, and frame drops. We report processing time, pixel-level error of estimated body center and radius and the effect of noise on estimated body parameters for a dataset of synthetic images

    Efficient Denoising Of High Resolution Color Digital Images Utilizing Krylov Subspace Spectral Methods

    Get PDF
    The solution to a parabolic nonlinear diffusion equation using a Krylov Subspace Spectral method is applied to high resolution color digital images with parallel processing for efficient denoising. The evolution of digital image technology, processing power, and numerical methods must evolve to increase efficiency in order to meet current usage requirements. Much work has been done to perfect the edge detector in Perona-Malik equation variants, while minimizing the effects of artifacts. It is demonstrated that this implementation of a regularized partial differential equation model controls backward diffusion, achieves strong denoising, and minimizes blurring and other ancillary effects. By adaptively tuning edge detector parameters so as to not require human interaction, we propose to automatically adapt the parameters to specific images. It is anticipated that with KSS methods, in conjunction with efficient block processing, we will set new standards for efficiency and automation
    • …
    corecore