130 research outputs found

    Abduction-Based Explanations for Machine Learning Models

    Full text link
    The growing range of applications of Machine Learning (ML) in a multitude of settings motivates the ability of computing small explanations for predictions made. Small explanations are generally accepted as easier for human decision makers to understand. Most earlier work on computing explanations is based on heuristic approaches, providing no guarantees of quality, in terms of how close such solutions are from cardinality- or subset-minimal explanations. This paper develops a constraint-agnostic solution for computing explanations for any ML model. The proposed solution exploits abductive reasoning, and imposes the requirement that the ML model can be represented as sets of constraints using some target constraint reasoning system for which the decision problem can be answered with some oracle. The experimental results, obtained on well-known datasets, validate the scalability of the proposed approach as well as the quality of the computed solutions

    Pseudo-Boolean Optimization by Implicit Hitting Sets

    Get PDF
    Recent developments in applying and extending Boolean satisfiability (SAT) based techniques have resulted in new types of approaches to pseudo-Boolean optimization (PBO), complementary to the more classical integer programming techniques. In this paper, we develop the first approach to pseudo-Boolean optimization based on instantiating the so-called implicit hitting set (IHS) approach, motivated by the success of IHS implementations for maximum satisfiability (MaxSAT). In particular, we harness recent advances in native reasoning techniques for pseudo-Boolean constraints, which enable efficiently identifying inconsistent assignments over subsets of objective function variables (i.e. unsatisfiable cores in the context of PBO), as a basis for developing a native IHS approach to PBO, and study the impact of various search techniques applicable in the context of IHS for PBO. Through an extensive empirical evaluation, we show that the IHS approach to PBO can outperform other currently available PBO solvers, and also provides a complementary approach to PBO when compared to classical integer programming techniques

    Unifying Reasoning and Core-Guided Search for Maximum Satisfiability

    Get PDF
    A central algorithmic paradigm in maximum satisfiability solving geared towards real-world optimization problems is the core-guided approach. Furthermore, recent progress on preprocessing techniques is bringing in additional reasoning techniques to MaxSAT solving. Towards realizing their combined potential, understanding formal underpinnings of interleavings of preprocessing-style reasoning and core-guided algorithms is important. It turns out that earlier proposed notions for establishing correctness of core-guided algorithms and preprocessing, respectively, are not enough for capturing correctness of interleavings of the techniques. We provide an in-depth analysis of these and related MaxSAT instance transformations, and propose correction set reducibility as a notion that captures inprocessing MaxSAT solving within a state-transition style abstract MaxSAT solving framework. Furthermore, we establish a general theorem of correctness for applications of SAT-based preprocessing techniques in MaxSAT. The results pave way for generic techniques for arguing about the formal correctness of MaxSAT algorithms.Peer reviewe

    Pseudo-Boolean Optimization by Implicit Hitting Sets

    Get PDF
    Peer reviewe

    MaxSAT Evaluation 2017 : Solver and Benchmark Descriptions

    Get PDF
    Peer reviewe

    The Seesaw Algorithm: Function Optimization Using Implicit Hitting Sets

    Get PDF
    The paper introduces the Seesaw algorithm, which explores the Pareto frontier of two given functions. The algorithm is complete and generalizes the well-known implicit hitting set paradigm. The first given function determines a cost of a hitting set and is optimized by an exact solver. The second, called the oracle function, is treated as a black-box. This approach is particularly useful in the optimization of functions that are impossible to encode into an exact solver. We show the effectiveness of the algorithm in the context of static solver portfolio selection. The existing implicit hitting set paradigm is applied to cost function and an oracle predicate. Hence, the Seesaw algorithm generalizes this by enabling the oracle to be a function. The paper identifies two independent preconditions that guarantee the correctness of the algorithm. This opens a number of avenues for future research into the possible instantiations of the algorithm, depending on the cost and oracle functions used
    corecore