30 research outputs found

    Implicit equations of non-degenerate rational Bezier quadric triangles

    Full text link
    In this paper we review the derivation of implicit equations for non-degenerate quadric patches in rational BĂ©zier triangular form. These are the case of Steiner surfaces of degree two. We derive the bilinear forms for such quadrics in a coordinate-free fashion in terms of their control net and their list of weights in a suitable form. Our construction relies on projective geometry and is grounded on the pencil of quadrics circumscribed to a tetrahedron formed by vertices of the control net and an additional point which is required for the Steiner surface to be a non-degenerate quadric

    Extensions to OpenGL for CAGD.

    Get PDF
    Many computer graphic API’s, including OpenGL, emphasize modeling with rectangular patches, which are especially useful in Computer Aided Geomeric Design (CAGD). However, not all shapes are rectangular; some are triangular or more complex. This paper extends the OpenGL library to support the modeling of triangular patches, Coons patches, and Box-splines patches. Compared with the triangular patch created from degenerate rectangular Bezier patch with the existing functions provided by OpenGL, the triangular Bezier patches can be used in certain design situations and allow designers to achieve high-quality results that are less CPU intense and require less storage space. The addition of Coons patches and Box splines to the OpenGL library also give it more functionality. Both patch types give CAGD users more flexibility in designing surfaces. A library for all three patch types was developed as an addition to OpenGL

    Algebraic Smooth Occluding Contours

    Full text link
    Computing occluding contours is a key building block of non-photorealistic rendering, but producing contours with consistent visibility has been notoriously challenging. This paper describes the first general-purpose smooth surface construction for which the occluding contours can be computed in closed form. For a given input mesh and camera viewpoint, we produce a G1G^1 piecewise-quadratic surface approximating the mesh. We show how the image-space occluding contours of this representation may then be described as piecewise rational curves. We show that this method produces smooth contours with consistent visibility much more efficiently than the state-of-the-art.Comment: 10 pages, 11 figure

    High-Quality Simplification and Repair of Polygonal Models

    Get PDF
    Because of the rapid evolution of 3D acquisition and modelling methods, highly complex and detailed polygonal models with constantly increasing polygon count are used as three-dimensional geometric representations of objects in computer graphics and engineering applications. The fact that this particular representation is arguably the most widespread one is due to its simplicity, flexibility and rendering support by 3D graphics hardware. Polygonal models are used for rendering of objects in a broad range of disciplines like medical imaging, scientific visualization, computer aided design, film industry, etc. The handling of huge scenes composed of these high-resolution models rapidly approaches the computational capabilities of any graphics accelerator. In order to be able to cope with the complexity and to build level-of-detail representations, concentrated efforts were dedicated in the recent years to the development of new mesh simplification methods that produce high-quality approximations of complex models by reducing the number of polygons used in the surface while keeping the overall shape, volume and boundaries preserved as much as possible. Many well-established methods and applications require "well-behaved" models as input. Degenerate or incorectly oriented faces, T-joints, cracks and holes are just a few of the possible degenaracies that are often disallowed by various algorithms. Unfortunately, it is all too common to find polygonal models that contain, due to incorrect modelling or acquisition, such artefacts. Applications that may require "clean" models include finite element analysis, surface smoothing, model simplification, stereo lithography. Mesh repair is the task of removing artefacts from a polygonal model in order to produce an output model that is suitable for further processing by methods and applications that have certain quality requirements on their input. This thesis introduces a set of new algorithms that address several particular aspects of mesh repair and mesh simplification. One of the two mesh repair methods is dealing with the inconsistency of normal orientation, while another one, removes the inconsistency of vertex connectivity. Of the three mesh simplification approaches presented here, the first one attempts to simplify polygonal models with the highest possible quality, the second, applies the developed technique to out-of-core simplification, and the third, prevents self-intersections of the model surface that can occur during mesh simplification

    Functional representation and manipulation of shapes with applications in surface and solid modeling

    Get PDF
    Real-valued functions have wide applications in various areas within computer graphics. In this work, we examine three representation of shapes using functions. In particular, we study the classical B-spline representation of piece-wise polynomials in the univariate domain. We provide a generalization of B-spline to the bivariate domain using intuition gained from the univariate construction. We also study the popular scheme of representing 3D density distribution using a uniform, rectilinear grid, where we provide a novel contouring scheme that culls occluded inner geometries. Lastly, we examine a ray-based representation for 3D indicator functions called ray-rep, for which we present a novel meshing scheme with multi-material extensions
    corecore