1,466 research outputs found

    High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation

    Get PDF
    We construct a high order discontinuous Galerkin method for solving general hyperbolic systems of conservation laws. The method is CFL-less, matrix-free, has the complexity of an explicit scheme and can be of arbitrary order in space and time. The construction is based on: (a) the representation of the system of conservation laws by a kinetic vectorial representation with a stiff relaxation term; (b) a matrix-free, CFL-less implicit discontinuous Galerkin transport solver; and (c) a stiffly accurate composition method for time integration. The method is validated on several one-dimensional test cases. It is then applied on two-dimensional and three-dimensional test cases: flow past a cylinder, magnetohydrodynamics and multifluid sedimentation

    Error estimation and adaptive moment hierarchies for goal-oriented approximations of the Boltzmann equation

    Full text link
    This paper presents an a-posteriori goal-oriented error analysis for a numerical approximation of the steady Boltzmann equation based on a moment-system approximation in velocity dependence and a discontinuous Galerkin finite-element (DGFE) approximation in position dependence. We derive computable error estimates and bounds for general target functionals of solutions of the steady Boltzmann equation based on the DGFE moment approximation. The a-posteriori error estimates and bounds are used to guide a model adaptive algorithm for optimal approximations of the goal functional in question. We present results for one-dimensional heat transfer and shock structure problems where the moment model order is refined locally in space for optimal approximation of the heat flux.Comment: arXiv admin note: text overlap with arXiv:1602.0131

    High Order Asymptotic Preserving DG-IMEX Schemes for Discrete-Velocity Kinetic Equations in a Diffusive Scaling

    Full text link
    In this paper, we develop a family of high order asymptotic preserving schemes for some discrete-velocity kinetic equations under a diffusive scaling, that in the asymptotic limit lead to macroscopic models such as the heat equation, the porous media equation, the advection-diffusion equation, and the viscous Burgers equation. Our approach is based on the micro-macro reformulation of the kinetic equation which involves a natural decomposition of the equation to the equilibrium and non-equilibrium parts. To achieve high order accuracy and uniform stability as well as to capture the correct asymptotic limit, two new ingredients are employed in the proposed methods: discontinuous Galerkin spatial discretization of arbitrary order of accuracy with suitable numerical fluxes; high order globally stiffly accurate implicit-explicit Runge-Kutta scheme in time equipped with a properly chosen implicit-explicit strategy. Formal asymptotic analysis shows that the proposed scheme in the limit of epsilon -> 0 is an explicit, consistent and high order discretization for the limiting equation. Numerical results are presented to demonstrate the stability and high order accuracy of the proposed schemes together with their performance in the limit

    An Entropy Stable Discontinuous Galerkin Finite-Element Moment Method for the Boltzmann Equation

    Full text link
    This paper presents a numerical approximation technique for the Boltzmann equation based on a moment system approximation in velocity dependence and a discontinuous Galerkin finite-element approximation in position dependence. The closure relation for the moment systems derives from minimization of a suitable {\phi}-divergence. This divergence-based closure yields a hierarchy of tractable symmetric hyperbolic moment systems that retain the fundamental structural properties of the Boltzmann equation. The resulting combined discontinuous Galerkin moment method corresponds to a Galerkin approximation of the Boltzmann equation in renormalized form. We present a new class of numerical flux functions, based on the underlying renormalized Boltzmann equation, that ensure entropy dissipation of the approximation scheme. Numerical results are presented for a one-dimensional test case.Comment: arXiv admin note: substantial text overlap with arXiv:1503.0518
    • …
    corecore