153 research outputs found

    Implicit Coordination of Caches in Small Cell Networks under Unknown Popularity Profiles

    Get PDF
    We focus on a dense cellular network, in which a limited-size cache is available at every Base Station (BS). In order to optimize the overall performance of the system in such scenario, where a significant fraction of the users is covered by several BSs, a tight coordination among nearby caches is needed. To this end, this pape introduces a class of simple and fully distributed caching policies, which require neither direct communication among BSs, nor a priori knowledge of content popularity. Furthermore, we propose a novel approximate analytical methodology to assess the performance of interacting caches under such policies. Our approach builds upon the well known characteristic time approximation and provides predictions that are surprisingly accurate (hardly distinguishable from the simulations) in most of the scenarios. Both synthetic and trace-driven results show that the our caching policies achieve excellent performance (in some cases provably optimal). They outperform state-of-the-art dynamic policies for interacting caches, and, in some cases, also the greedy content placement, which is known to be the best performing polynomial algorithm under static and perfectly-known content popularity profiles

    Caching Policies for Delay Minimization in Small Cell Networks with Joint Transmissions

    Get PDF
    International audienceIn 5G and beyond network architectures, operators and content providers base their content distribution strategies on Heterogeneous Networks, where macro and small(er) cells are combined to offer better Quality of Service (QoS) to wireless users. On top of such networks, edge caching and Coordinated Multi-Point (CoMP) transmissions are used to further improve performance. The problem of optimally utilizing the cache space in dense and heterogeneous cell networks has been extensively studied under the name of "FemtoCaching." However, related literature usually assumes relatively simple physical layer (PHY) setups and known or stationary content popularity. In this paper, we address these issues by proposing a class of fully distributed and dynamic caching algorithms that take advantage of CoMP capabilities towards minimizing PHY-aware metrics, such as end-to-end (E2E) delay. Our policies outperform existing dynamic solutions that are PHY-unaware, under both synthetic and real (non-stationary) request processes, and converge to efficient centralized solutions, in static setups

    Online Caching with no Regret: Optimistic Learning via Recommendations

    Full text link
    The design of effective online caching policies is an increasingly important problem for content distribution networks, online social networks and edge computing services, among other areas. This paper proposes a new algorithmic toolbox for tackling this problem through the lens of optimistic online learning. We build upon the Follow-the-Regularized-Leader (FTRL) framework, which is developed further here to include predictions for the file requests, and we design online caching algorithms for bipartite networks with fixed-size caches or elastic leased caches subject to time-average budget constraints. The predictions are provided by a content recommendation system that influences the users viewing activity and hence can naturally reduce the caching network's uncertainty about future requests. We also extend the framework to learn and utilize the best request predictor in cases where many are available. We prove that the proposed {optimistic} learning caching policies can achieve sub-zero performance loss (regret) for perfect predictions, and maintain the sub-linear regret bound O(T)O(\sqrt T), which is the best achievable bound for policies that do not use predictions, even for arbitrary-bad predictions. The performance of the proposed algorithms is evaluated with detailed trace-driven numerical tests.Comment: arXiv admin note: substantial text overlap with arXiv:2202.1059

    Similarity Caching: Theory and Algorithms

    Get PDF
    This paper focuses on similarity caching systems, in which a user request for an object o that is not in the cache can be (partially) satisfied by a similar stored object o 0 , at the cost of a loss of user utility. Similarity caching systems can be effectively employed in several application areas, like multimedia retrieval, recommender systems, genome study, and machine learning training/serving. However, despite their relevance, the behavior of such systems is far from being well understood. In this paper, we provide a first comprehensive analysis of similarity caching in the offline, adversarial, and stochastic settings. We show that similarity caching raises significant new challenges, for which we propose the first dynamic policies with some optimality guarantees. We evaluate the performance of our schemes under both synthetic and real request traces

    The Role of Caching in Future Communication Systems and Networks

    Get PDF
    This paper has the following ambitious goal: to convince the reader that content caching is an exciting research topic for the future communication systems and networks. Caching has been studied for more than 40 years, and has recently received increased attention from industry and academia. Novel caching techniques promise to push the network performance to unprecedented limits, but also pose significant technical challenges. This tutorial provides a brief overview of existing caching solutions, discusses seminal papers that open new directions in caching, and presents the contributions of this special issue. We analyze the challenges that caching needs to address today, also considering an industry perspective, and identify bottleneck issues that must be resolved to unleash the full potential of this promising technique

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges
    • …
    corecore