77 research outputs found

    Adaptive object management for distributed systems

    Get PDF
    This thesis describes an architecture supporting the management of pluggable software components and evaluates it against the requirement for an enterprise integration platform for the manufacturing and petrochemical industries. In a distributed environment, we need mechanisms to manage objects and their interactions. At the least, we must be able to create objects in different processes on different nodes; we must be able to link them together so that they can pass messages to each other across the network; and we must deliver their messages in a timely and reliable manner. Object based environments which support these services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbroker(ACA,1992), Iona's Orbix(Orbix,1994)Yet such environments provide limited support for composing applications from pluggable components. Pluggability is the ability to install and configure a component into an environment dynamically when the component is used, without specifying static dependencies between components when they are produced. Pluggability is supported to a degree by dynamic binding. Components may be programmed to import references to other components and to explore their interfaces at runtime, without using static type dependencies. Yet thus overloads the component with the responsibility to explore bindings. What is still generally missing is an efficient general-purpose binding model for managing bindings between independently produced components. In addition, existing environments provide no clear strategy for dealing with fine grained objects. The overhead of runtime binding and remote messaging will severely reduce performance where there are a lot of objects with complex patterns of interaction. We need an adaptive approach to managing configurations of pluggable components according to the needs and constraints of the environment. Management is made difficult by embedding bindings in component implementations and by relying on strong typing as the only means of verifying and validating bindings. To solve these problems we have built a set of configuration tools on top of an existing distributed support environment. Specification tools facilitate the construction of independent pluggable components. Visual composition tools facilitate the configuration of components into applications and the verification of composite behaviours. A configuration model is constructed which maintains the environmental state. Adaptive management is made possible by changing the management policy according to this state. Such policy changes affect the location of objects, their bindings, and the choice of messaging system

    A Specification Environment That Supports the Prototyping of Distributed Systems Using an Object-Oriented Model.

    Get PDF
    High-speed computer networking, interactive service, and incremental growth for computing are some of the motivations for developing a distributed system. Despite the inherent benefits of a distributed system, the development of software support is more difficult for distributed systems than for sequential systems. In either case, difficulties may arise from the communication problems between two groups of people with different backgrounds trying to formulate requirements for the system. This process depends on feedback and may take many iterations to converge. Customers can usually recognize the features they need when they start using a system, which makes prototyping an important tool in requirement analysis. Many prototyping goals, objectives, and approaches are possible. Executable formal specifications are the most attractive ones. This unification of specification and prototyping by having code generators has advantages of providing consistency and prototyping at higher levels of abstraction. Thus, a methodology for executing the DOSL (Distributed Object-based Specification Language) is defined and a prototype system is developed. DOSL is extended as a new formal distributed object-oriented specification language, DOSL-II. DOSL-II is object-oriented rather than object-based, and includes class, inheritance, simple I/O, stream I/O, concurrent I/O, and new constructs for object communication

    Automated reasoning for reflective programs

    Get PDF
    Reflective programming allows one to construct programs that manipulate or examine their behaviour or structure at runtime. One of the benefits is the ability to create generic code that is able to adapt to being incorporated into different larger programs, without modifications to suit each concrete setting. Due to the runtime nature of reflection, static verification is difficult and has been largely ignored or only weakly supported. This work focusses on supporting verification for cases where generic code that uses reflection is to be used in a “closed” program where the structure of the program is known in advance. This thesis first describes extensions to a verification system and semi-automated tool that was developed to reason about heap-manipulating programs which may store executable code on the heap. These extensions enable the tool to support a wider range of programs on account of the ability to provide stronger specifications. The system’s underlying logic is an extension of separation logic that includes nested Hoare-triples which describe behaviour of stored code. Using this verification tool, with the crucial enhancements in this work, a specified reflective library has been created. The resulting work presents an approach where metadata is stored on the heap such that the reflective library can be implemented using primitive commands and then specified and verified, rather than developing new proof rules for the reflective operations. The supported reflective functions characterise a subset of Java’s reflection library and the specifications guarantee both memory safety and a degree of functional correctness. To demonstrate the application of the developed solution two case studies are carried out, each of which focuses on different reflection features. The contribution to knowledge is a first look at how to support semi-automated static verification of reflective programs with meaningful specifications

    Transforming Databases with Recursive Data Structures

    Get PDF
    This thesis examines the problems of performing structural transformations on databases involving complex data-structures and object-identities, and proposes an approach to specifying and implementing such transformations. We start by looking at various applications of such database transformations, and at some of the more significant work in these areas. In particular we will look at work on transformations in the area of database integration, which has been one of the major motivating areas for this work. We will also look at various notions of correctness that have been proposed for database transformations, and show that the utility of such notions is limited by the dependence of transformations on certain implicit database constraints. We draw attention to the limitations of existing work on transformations, and argue that there is a need for a more general formalism for reasoning about database transformations and constraints. We will also argue that, in order to ensure that database transformations are well-defined and meaningful, it is necessary to understand the information capacity of the data-models being transformed. To this end we give a thorough analysis of the information capacity of data-models supporting object identity, and will show that this is dependent on the operations supported by a query language for comparing object identities. We introduce a declarative language, WOL, based on Horn-clause logic, for specifying database transformations and constraints. We also propose a method of implementing transformations specified in this language, by manipulating their clauses into a normal form which can then be translated into an underlying database programming language. Finally we will present a number of optimizations and techniques necessary in order to build a practical implementation based on these proposals, and will discuss the results of some of the trials that were carried out using a prototype of such a system

    Theorem Provers as Libraries -- An Approach to Formally Verifying Functional Programs

    Get PDF
    Property-directed verification of functional programs tends to take one of two paths. First, is the traditional testing approach, where properties are expressed in the original programming language and checked with a collection of test data. Alternatively, for those desiring a more rigorous approach, properties can be written and checked with a formal tool; typically, an external proof system. This dissertation details a hybrid approach that captures the best of both worlds: the formality of a proof system paired with the native integration of an embedded, domain specific language (EDSL) for testing. At the heart of this hybridization is the titular concept -- a theorem prover as a library. The verification capabilities of this prover, HaskHOL, are introduced to a Haskell development environment as a GHC compiler plugin. Operating at the compiler level provides for a comparatively simpler integration and allows verification to co-exist with the numerous other passes that stand between source code and program

    A graphical specification environnement for GCM component-based applications

    Get PDF
    National audienceAccording to the paradigm of component-based software engineering a software system can be represented as a set of independent reusable modules which communicate with each other. The OASIS team is working on a Grid Component Model (GCM) which defines how a distributed component-based application should be designed, deployed and developed. This work is focused on the modeling aspect of GCM-based applications. First, we define a formal model for the GCM-based applications architecture. Second, we provide a formalized set of consistency constraints for the GCM-based architecture validation. The created set consists of the validation rules gathered from different sources. Finally, we implement a graphical editor for the GCM-based applications architecture and behavior specifications. It has an architecture validation module which allows to verify the formalized set of constraints

    A Sign-Based Phrase Structure Grammar for Turkish

    Full text link
    This study analyses Turkish syntax from an informational point of view. Sign based linguistic representation and principles of HPSG (Head-driven Phrase Structure Grammar) theory are adapted to Turkish. The basic informational elements are nested and inherently sorted feature structures called signs. In the implementation, logic programming tool ALE (Attribute Logic Engine) which is primarily designed for implementing HPSG grammars is used. A type and structure hierarchy of Turkish language is designed. Syntactic phenomena such a s subcategorization, relative clauses, constituent order variation, adjuncts, nomina l predicates and complement-modifier relations in Turkish are analyzed. A parser is designed and implemented in ALE.Comment: MS. Thesis, Dept. of Computer Engineering, Middle East Technical University, Ankara January, 1996, 97 pages. 5 eps figures, uses avm,psfig,lingmacros,tree-dvips,ulem,QobiTree,alltt ulem.sty,QobiTree.sty,alltt.sty and eps files included in ta

    Design of a Health Monitoring Device

    Get PDF
    Home medical monitoring systems allow care providers to reduce their patient load, but no available systems offer portable operation. This effectively tethers patients to a specific location. In conjunction with the University of Limerick, our team desiged and implemented a proof-of-concept portable medical monitor able to transfer medical data wirelessly. Our completed project supports USB and 802.11b, includes a display and basic user interface, and runs Linux, making it a highly flexible platform for future progression toward marketability

    Toward the development of a knowledge-based construction schedule planning system

    Get PDF
    This research attempts to model and prototype a knowledge-based system for use in the construction industry to accomplish the automatic generation of initial construction schedules. The schedule can be transformed into a logical network that provides a physical representation of the construction operations plan. The prototype system, which requires symbolic processing and reasoning, is developed based on an intensive modeling that rationally examines industry practice. The model identifies work breakdown and precedence relationship as the two major concepts in schedule planning. Work breakdown is concerned with the identification of construction activities that result in the completion of project elements. Precedence relationship is related to the sequencing of construction tasks based on the constraints of scheduling. The knowledge structure of the prototype system is composed of databases, heuristics and algorithms. The databases consist of facts used to represent the structured hierarchy of activities and the formalized task precedence relationships. The heuristics are rules used to determine the breakdown of activities into scheduling modules, the appropriate level of detail and the precedence conditions. The algorithms are procedures used for activity breakdown, task sequencing and task redundancy The current application, scheduling a reinforced concrete building, is specifically prototyped to evaluate the model and the effectiveness of the system. A knowledge system shell M.l is used to prototype this schedule planning system. The prototype has been evaluated by conducting a laboratory experiment on inexperienced schedulers. By measuring the quality and the time of performance, the results of this experiment have suggested that the system can be an effective productivity tool to construction schedulers and planners. The ability of the system to improve the quality of construction schedules further suggests that the model developed is rigorous enough to warrant its continued development into a production standard system --Abstract, pages ii-iii

    HybridMDSD: Multi-Domain Engineering with Model-Driven Software Development using Ontological Foundations

    Get PDF
    Software development is a complex task. Executable applications comprise a mutlitude of diverse components that are developed with various frameworks, libraries, or communication platforms. The technical complexity in development retains resources, hampers efficient problem solving, and thus increases the overall cost of software production. Another significant challenge in market-driven software engineering is the variety of customer needs. It necessitates a maximum of flexibility in software implementations to facilitate the deployment of different products that are based on one single core. To reduce technical complexity, the paradigm of Model-Driven Software Development (MDSD) facilitates the abstract specification of software based on modeling languages. Corresponding models are used to generate actual programming code without the need for creating manually written, error-prone assets. Modeling languages that are tailored towards a particular domain are called domain-specific languages (DSLs). Domain-specific modeling (DSM) approximates technical solutions with intentional problems and fosters the unfolding of specialized expertise. To cope with feature diversity in applications, the Software Product Line Engineering (SPLE) community provides means for the management of variability in software products, such as feature models and appropriate tools for mapping features to implementation assets. Model-driven development, domain-specific modeling, and the dedicated management of variability in SPLE are vital for the success of software enterprises. Yet, these paradigms exist in isolation and need to be integrated in order to exhaust the advantages of every single approach. In this thesis, we propose a way to do so. We introduce the paradigm of Multi-Domain Engineering (MDE) which means model-driven development with multiple domain-specific languages in variability-intensive scenarios. MDE strongly emphasize the advantages of MDSD with multiple DSLs as a neccessity for efficiency in software development and treats the paradigm of SPLE as indispensable means to achieve a maximum degree of reuse and flexibility. We present HybridMDSD as our solution approach to implement the MDE paradigm. The core idea of HybidMDSD is to capture the semantics of particular DSLs based on properly defined semantics for software models contained in a central upper ontology. Then, the resulting semantic foundation can be used to establish references between arbitrary domain-specific models (DSMs) and sophisticated instance level reasoning ensures integrity and allows to handle partiucular change adaptation scenarios. Moreover, we present an approach to automatically generate composition code that integrates generated assets from separate DSLs. All necessary development tasks are arranged in a comprehensive development process. Finally, we validate the introduced approach with a profound prototypical implementation and an industrial-scale case study.Softwareentwicklung ist komplex: ausfĂŒhrbare Anwendungen beinhalten und vereinen eine Vielzahl an Komponenten, die mit unterschiedlichen Frameworks, Bibliotheken oder Kommunikationsplattformen entwickelt werden. Die technische KomplexitĂ€t in der Entwicklung bindet Ressourcen, verhindert effiziente Problemlösung und fĂŒhrt zu insgesamt hohen Kosten bei der Produktion von Software. ZusĂ€tzliche Herausforderungen entstehen durch die Vielfalt und Unterschiedlichkeit an KundenwĂŒnschen, die der Entwicklung ein hohes Maß an FlexibilitĂ€t in Software-Implementierungen abverlangen und die Auslieferung verschiedener Produkte auf Grundlage einer Basis-Implementierung nötig machen. Zur Reduktion der technischen KomplexitĂ€t bietet sich das Paradigma der modellgetriebenen Softwareentwicklung (MDSD) an. Software-Spezifikationen in Form abstrakter Modelle werden hier verwendet um Programmcode zu generieren, was die fehleranfĂ€llige, manuelle Programmierung Ă€hnlicher Komponenten ĂŒberflĂŒssig macht. Modellierungssprachen, die auf eine bestimmte ProblemdomĂ€ne zugeschnitten sind, nennt man domĂ€nenspezifische Sprachen (DSLs). DomĂ€nenspezifische Modellierung (DSM) vereint technische Lösungen mit intentionalen Problemen und ermöglicht die Entfaltung spezialisierter Expertise. Um der Funktionsvielfalt in Software Herr zu werden, bietet der Forschungszweig der Softwareproduktlinienentwicklung (SPLE) verschiedene Mittel zur Verwaltung von VariabilitĂ€t in Software-Produkten an. Hierzu zĂ€hlen Feature-Modelle sowie passende Werkzeuge, um Features auf Implementierungsbestandteile abzubilden. Modellgetriebene Entwicklung, domĂ€nenspezifische Modellierung und eine spezielle Handhabung von VariabilitĂ€t in Softwareproduktlinien sind von entscheidender Bedeutung fĂŒr den Erfolg von Softwarefirmen. Zur Zeit bestehen diese Paradigmen losgelöst voneinander und mĂŒssen integriert werden, damit die Vorteile jedes einzelnen fĂŒr die Gesamtheit der Softwareentwicklung entfaltet werden können. In dieser Arbeit wird ein Ansatz vorgestellt, der dies ermöglicht. Es wird das Multi-Domain Engineering Paradigma (MDE) eingefĂŒhrt, welches die modellgetriebene Softwareentwicklung mit mehreren domĂ€nenspezifischen Sprachen in variabilitĂ€tszentrierten Szenarien beschreibt. MDE stellt die Vorteile modellgetriebener Entwicklung mit mehreren DSLs als eine Notwendigkeit fĂŒr Effizienz in der Entwicklung heraus und betrachtet das SPLE-Paradigma als unabdingbares Mittel um ein Maximum an Wiederverwendbarkeit und FlexibilitĂ€t zu erzielen. In der Arbeit wird ein Ansatz zur Implementierung des MDE-Paradigmas, mit dem Namen HybridMDSD, vorgestellt
    • 

    corecore