8,223 research outputs found

    Statistical Inference for Partially Observed Markov Processes via the R Package pomp

    Get PDF
    Partially observed Markov process (POMP) models, also known as hidden Markov models or state space models, are ubiquitous tools for time series analysis. The R package pomp provides a very flexible framework for Monte Carlo statistical investigations using nonlinear, non-Gaussian POMP models. A range of modern statistical methods for POMP models have been implemented in this framework including sequential Monte Carlo, iterated filtering, particle Markov chain Monte Carlo, approximate Bayesian computation, maximum synthetic likelihood estimation, nonlinear forecasting, and trajectory matching. In this paper, we demonstrate the application of these methodologies using some simple toy problems. We also illustrate the specification of more complex POMP models, using a nonlinear epidemiological model with a discrete population, seasonality, and extra-demographic stochasticity. We discuss the specification of user-defined models and the development of additional methods within the programming environment provided by pomp.Comment: In press at the Journal of Statistical Software. A version of this paper is provided at the pomp package website: http://kingaa.github.io/pom

    Multidimensional Quasi-Monte Carlo Malliavin Greeks

    Get PDF
    We investigate the use of Malliavin calculus in order to calculate the Greeks of multidimensional complex path-dependent options by simulation. For this purpose, we extend the formulas employed by Montero and Kohatsu-Higa to the multidimensional case. The multidimensional setting shows the convenience of the Malliavin Calculus approach over different techniques that have been previously proposed. Indeed, these techniques may be computationally expensive and do not provide flexibility for variance reduction. In contrast, the Malliavin approach exhibits a higher flexibility by providing a class of functions that return the same expected value (the Greek) with different accuracies. This versatility for variance reduction is not possible without the use of the generalized integral by part formula of Malliavin Calculus. In the multidimensional context, we find convenient formulas that permit to improve the localization technique, introduced in Fourni\'e et al and reduce both the computational cost and the variance. Moreover, we show that the parameters employed for variance reduction can be obtained \textit{on the flight} in the simulation. We illustrate the efficiency of the proposed procedures, coupled with the enhanced version of Quasi-Monte Carlo simulations as discussed in Sabino, for the numerical estimation of the Deltas of call, digital Asian-style and Exotic basket options with a fixed and a floating strike price in a multidimensional Black-Scholes market.Comment: 22 pages, 6 figure

    Convenient Multiple Directions of Stratification

    Full text link
    This paper investigates the use of multiple directions of stratification as a variance reduction technique for Monte Carlo simulations of path-dependent options driven by Gaussian vectors. The precision of the method depends on the choice of the directions of stratification and the allocation rule within each strata. Several choices have been proposed but, even if they provide variance reduction, their implementation is computationally intensive and not applicable to realistic payoffs, in particular not to Asian options with barrier. Moreover, all these previously published methods employ orthogonal directions for multiple stratification. In this work we investigate the use of algorithms producing convenient directions, generally non-orthogonal, combining a lower computational cost with a comparable variance reduction. In addition, we study the accuracy of optimal allocation in terms of variance reduction compared to the Latin Hypercube Sampling. We consider the directions obtained by the Linear Transformation and the Principal Component Analysis. We introduce a new procedure based on the Linear Approximation of the explained variance of the payoff using the law of total variance. In addition, we exhibit a novel algorithm that permits to correctly generate normal vectors stratified along non-orthogonal directions. Finally, we illustrate the efficiency of these algorithms in the computation of the price of different path-dependent options with and without barriers in the Black-Scholes and in the Cox-Ingersoll-Ross markets.Comment: 21 pages, 11 table

    Multidimensional integration through Markovian sampling under steered function morphing: a physical guise from statistical mechanics

    Full text link
    We present a computational strategy for the evaluation of multidimensional integrals on hyper-rectangles based on Markovian stochastic exploration of the integration domain while the integrand is being morphed by starting from an initial appropriate profile. Thanks to an abstract reformulation of Jarzynski's equality applied in stochastic thermodynamics to evaluate the free-energy profiles along selected reaction coordinates via non-equilibrium transformations, it is possible to cast the original integral into the exponential average of the distribution of the pseudo-work (that we may term "computational work") involved in doing the function morphing, which is straightforwardly solved. Several tests illustrate the basic implementation of the idea, and show its performance in terms of computational time, accuracy and precision. The formulation for integrand functions with zeros and possible sign changes is also presented. It will be stressed that our usage of Jarzynski's equality shares similarities with a practice already known in statistics as Annealed Importance Sampling (AIS), when applied to computation of the normalizing constants of distributions. In a sense, here we dress the AIS with its "physical" counterpart borrowed from statistical mechanics.Comment: 3 figures Supplementary Material (pdf file named "JEMDI_SI.pdf"

    Approximate Bayesian Computation by Modelling Summary Statistics in a Quasi-likelihood Framework

    Get PDF
    Approximate Bayesian Computation (ABC) is a useful class of methods for Bayesian inference when the likelihood function is computationally intractable. In practice, the basic ABC algorithm may be inefficient in the presence of discrepancy between prior and posterior. Therefore, more elaborate methods, such as ABC with the Markov chain Monte Carlo algorithm (ABC-MCMC), should be used. However, the elaboration of a proposal density for MCMC is a sensitive issue and very difficult in the ABC setting, where the likelihood is intractable. We discuss an automatic proposal distribution useful for ABC-MCMC algorithms. This proposal is inspired by the theory of quasi-likelihood (QL) functions and is obtained by modelling the distribution of the summary statistics as a function of the parameters. Essentially, given a real-valued vector of summary statistics, we reparametrize the model by means of a regression function of the statistics on parameters, obtained by sampling from the original model in a pilot-run simulation study. The QL theory is well established for a scalar parameter, and it is shown that when the conditional variance of the summary statistic is assumed constant, the QL has a closed-form normal density. This idea of constructing proposal distributions is extended to non constant variance and to real-valued parameter vectors. The method is illustrated by several examples and by an application to a real problem in population genetics.Comment: Published at http://dx.doi.org/10.1214/14-BA921 in the Bayesian Analysis (http://projecteuclid.org/euclid.ba) by the International Society of Bayesian Analysis (http://bayesian.org/
    • …
    corecore