7,741 research outputs found

    Programmable neural logic

    Get PDF
    Circuits of threshold elements (Boolean input, Boolean output neurons) have been shown to be surprisingly powerful. Useful functions such as XOR, ADD and MULTIPLY can be implemented by such circuits more efficiently than by traditional AND/OR circuits. In view of that, we have designed and built a programmable threshold element. The weights are stored on polysilicon floating gates, providing long-term retention without refresh. The weight value is increased using tunneling and decreased via hot electron injection. A weight is stored on a single transistor allowing the development of dense arrays of threshold elements. A 16-input programmable neuron was fabricated in the standard 2 Ī¼m double-poly, analog process available from MOSIS. We also designed and fabricated the multiple threshold element introduced in [5]. It presents the advantage of reducing the area of the layout from O(n^2) to O(n); (n being the number of variables) for a broad class of Boolean functions, in particular symmetric Boolean functions such as PARITY. A long term goal of this research is to incorporate programmable single/multiple threshold elements, as building blocks in field programmable gate arrays

    Pixie: A heterogeneous Virtual Coarse-Grained Reconfigurable Array for high performance image processing applications

    Full text link
    Coarse-Grained Reconfigurable Arrays (CGRAs) enable ease of programmability and result in low development costs. They enable the ease of use specifically in reconfigurable computing applications. The smaller cost of compilation and reduced reconfiguration overhead enables them to become attractive platforms for accelerating high-performance computing applications such as image processing. The CGRAs are ASICs and therefore, expensive to produce. However, Field Programmable Gate Arrays (FPGAs) are relatively cheaper for low volume products but they are not so easily programmable. We combine best of both worlds by implementing a Virtual Coarse-Grained Reconfigurable Array (VCGRA) on FPGA. VCGRAs are a trade off between FPGA with large routing overheads and ASICs. In this perspective we present a novel heterogeneous Virtual Coarse-Grained Reconfigurable Array (VCGRA) called "Pixie" which is suitable for implementing high performance image processing applications. The proposed VCGRA contains generic processing elements and virtual channels that are described using the Hardware Description Language VHDL. Both elements have been optimized by using the parameterized configuration tool flow and result in a resource reduction of 24% for each processing elements and 82% for each virtual channels respectively.Comment: Presented at 3rd International Workshop on Overlay Architectures for FPGAs (OLAF 2017) arXiv:1704.0880

    A Software-Defined-Radio Platform for Multiple-Input-Multiple-Output Over-The-Air Measurement

    Get PDF
    This paper presents a 2 Ɨ 2 multiple-inputmultiple-output over-the-air (MIMO OTA) measurement system with user-programmable, reconfigurable and real-time signal processing field-programmable gate arrays (FPGAs)-based software-defined radio (SDR) capability. Signal generation and analysis as well as channel emulation are all implemented using vector signal transceivers (VSTs). As a demonstration, we performed the Third Generation Partnership Project (3GPP) two-stage MIMO OTA conducted test using a downlink time division long-term evolution (TD-LTE) duplex scheme. The channel emulation was operated in a stochastic mode. Some preliminary results of the system verification are shown

    FPGA Implementation of Convolutional Neural Networks with Fixed-Point Calculations

    Full text link
    Neural network-based methods for image processing are becoming widely used in practical applications. Modern neural networks are computationally expensive and require specialized hardware, such as graphics processing units. Since such hardware is not always available in real life applications, there is a compelling need for the design of neural networks for mobile devices. Mobile neural networks typically have reduced number of parameters and require a relatively small number of arithmetic operations. However, they usually still are executed at the software level and use floating-point calculations. The use of mobile networks without further optimization may not provide sufficient performance when high processing speed is required, for example, in real-time video processing (30 frames per second). In this study, we suggest optimizations to speed up computations in order to efficiently use already trained neural networks on a mobile device. Specifically, we propose an approach for speeding up neural networks by moving computation from software to hardware and by using fixed-point calculations instead of floating-point. We propose a number of methods for neural network architecture design to improve the performance with fixed-point calculations. We also show an example of how existing datasets can be modified and adapted for the recognition task in hand. Finally, we present the design and the implementation of a floating-point gate array-based device to solve the practical problem of real-time handwritten digit classification from mobile camera video feed

    A field programmable gate array based modular motion control platform

    Get PDF
    The expectations from motion control systems have been rising day by day. As the systems become more complex, conventional motion control systems can not achieve to meet all the specifications with optimized results. This creates the necessity of fundamental changes in the infrastructure of the system. Field programmable gate array (FPGA) technology enables the reconfiguration of the digital hardware, thus dissolving the necessity of infrastructural changes for minor manipulations in the hardware even if the system is deployed. An FPGA based hardware system shrinks the size of the hardware hence the cost. FPGAs also provide better power ratings for the systems as well as a more reliable system with improved performance. As a trade off, the development is rather more difficult than software based systems, which also affects the research and development time of the overall system. In this paper a level of abstraction is introduced in order to diminish the requirement of advanced hardware description language (HDL) knowledge for implementing motion control systems thoroughly on an FPGA. The intellectual property library consists of synthesizable hardware modules specifically implemented for motion control purposes. Other parts of a motion control system, like user interface and trajectory generation, are implemented as software functions in order to protect the modularity of the system. There are also several external hardware designs for interfacing and driving various types of actuators
    • ā€¦
    corecore